Skip to main content

Fungal Genes Encoding Enzymes Used in Cheese Production and Fermentation Industries

  • Chapter
  • First Online:
Fungal Biotechnology and Bioengineering

Abstract

The extensive usage of milk and milk products worldwide has attracted special attention to cheese because of its health benefits and easy scale-up. At closer view, the enzymatic processes include endo- and exogenous enzymes such as plasmin, lipoprotein lipase, acid phosphatase, rennets, lipases, lysozyme, catalase, glucose oxidase, and β-galactosidase. Invariably, cheese acquires its texture and flavor by metabolic reactions upon ripening. This chapter focuses specially on the gene-encoded enzymes in fungi and the metabolic pathways, and ultimately summarizes the upstream and downstream processes in cheese production. The metabolic pathway of cheese flavor is controlled by many compounds, such as methanethiol, 2-keto-4-methylthio butyric acid, volatile sulfur compounds, amino acids, aromatic aminotransferases, branched-chain aminotransferases, NAD-glutamate dehydrogenase, and cystathione-β and -γ-lyase. The enzyme applications in brewing in general and for cheese in particular are comprehensively presented along with the genes encoding enzymes in the fungal metabolites used for cheese production. For instance, Penicillium roqueforti produces mycophenolic acid, roquefortine C, and andrastin A metabolites encoded by the sfk1 gene cluster. As a final point, gene tailoring and heterologous regulation are significant processes for improving quality and safety in cheese production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ávalos J, Díaz-Sánchez V, García-Martínez M, Castrillo J, Ruger-Herreros M, Carmen Limón M (2014) Biosynthesis and molecular genetics of fungal secondary metabolites. In: Fungal biology. Springer, New York

    Google Scholar 

  • Bachmann HP (2001) Cheese analogues: a review. Int Dairy J 11:505–515

    CAS  Google Scholar 

  • Bamforth CW (2009) Current perspectives on the role of enzymes in brewing. J Cereal Sci 50(3):353–357

    CAS  Google Scholar 

  • Barlowska J, Szwajkowska M, Litwińczuk Z, Król J (2011) Nutritional value and technological suitability of milk from various animal species used for dairy production. Compr Rev Food Sci Food Saf 10:291–302

    CAS  Google Scholar 

  • Barth SJ, Barth R, Barth AW (2014) The Barth Report 2013–2014, 32

    Google Scholar 

  • Becerra M, Rodríguez-Belmonte E, Cerdán ME, Siso MIG (2004) Engineered autolytic yeast strains secreting Kluyveromyces lactis β-galactosidase for production of heterologous proteins in lactose media. J Biotechnol 109:131–137

    CAS  PubMed  Google Scholar 

  • Beer M, Spector BA, Lawrence PR, Mills DQ, Walton RE (1984) Managing human assets. Simon and Schuster

    Google Scholar 

  • Bertolini MC, Laramee L, Thomas DY, Cygler M, Schrag JD, Vernet T (1994) Polymorphism in the lipase genes of Geotrichum candidum strains. Eur J Biochem 219(1–2):119–125

    Google Scholar 

  • Bonnarme P, Arfi K, Dury C, Helinck S, Yvon M, Spinnler HE (2001) Sulfur compound production by Geotrichum candidum from L-methionine: importance of the transamination step. FEMS Microbiol Lett 205:247–252

    CAS  PubMed  Google Scholar 

  • Boutrou R, Guéguen M (2005) Interests in Geotrichum candidum for cheese technology. Int J Food Microbiol 2:1–20

    Google Scholar 

  • Brígida AIS, Amaral PFF, Coelho MAZ, Gonçalves LRB (2014) Lipase from Yarrowia lipolytica: production, characterization and application as an industrial biocatalyst. J Mol Catal B Enzym 101:148–158

    Google Scholar 

  • Casal M, Paiva S, Andrade RP, Gancedo C, Leão C (1999) The lactate-proton symport of Saccharomyces cerevisiae is encoded by JEN1. J Bacteriol 181(8):2620–2623

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castellote J, Fraud S, Irlinger F, Swennen D, Fer F, Bonnarme P, Monnet C (2015) Investigation of Geotrichum candidum gene expression during the ripening of reblochon-type cheese by reverse transcription-quantitative PCR. Int J Food Microbiol 194:54–61

    CAS  PubMed  Google Scholar 

  • Chávez R, Roa A, Navarrete K, Trebotich J, Espinosa Y, Vaca I (2010) Evaluation of properties of several cheese-ripening fungi for potential biotechnological applications. Mycoscience 51:84–87

    Google Scholar 

  • Cheeseman K, Ropars J, Renault P, Dupont J, Gouzy J, Branca A, Abraham AL, Ceppi M, Conseiller E, Debuchy R, Malagnac F, Goarin A, Silar P, Lacoste S, Sallet E, Bensimon A, Giraud T, Brygoo Y (2014) Multiple recent horizontal transfers of a large genomic region in cheese making Fungi. Nat Commun 5:2876

    PubMed  PubMed Central  Google Scholar 

  • Cholet O, Hénaut A, Casaregola S, Bonnarme P (2007) Gene expression and biochemical analysis of cheese-ripening yeasts: focus on catabolism of L-methionine, lactate, and lactose. Appl Environ Microbiol 73(8):2561–2570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deetae P, Bonnarme P, Spinnler HE, Helinck S (2007) Production of volatile aroma compounds by bacterial strains isolated from different surface-ripened French cheeses. Appl Microbiol Biotechnol 76(5):1161–1171

    CAS  PubMed  Google Scholar 

  • Del-Cid A, Gil-Durán C, Vaca I, Rojas-Aedo JF, García-Rico RO, Levicán G, Chávez R (2016) Identification and functional analysis of the mycophenolic acid gene cluster of Penicillium roqueforti. PLoS One 11:e0147047

    PubMed  PubMed Central  Google Scholar 

  • Demarigny Y, Berger C, Desmasures N, Gueguen M, Spinnler HE (2000) Flavour sulphides are produced from methionine by two different pathways by Geotrichum candidum. J Dairy Res 67:261–271

    Google Scholar 

  • Diezhandino I, Fernández D, González L, McSweeney PLH, Fresno JM (2015) Microbiological, physico-chemical and proteolytic changes in a Spanish blue cheese during ripening (Valdeón cheese). Food Chem 168:134–141

    CAS  PubMed  Google Scholar 

  • Domingues L, Guimarães PMR, Oliveira C (2010) Metabolic engineering of Saccharomyces cerevisiae for lactose/whey fermentation. Bioeng Bugs 1:164–171

    PubMed  Google Scholar 

  • Dubey MK, Aamir M, Kaushik MS, Khare S, Meena M, Singh S, Upadhyay RS (2018) PR toxin: biosynthesis, genetic regulation, toxicological potential, prevention and control measures: overview and challenges. Front Pharmacol 9:288. https://doi.org/10.3389/fphar.2018.00288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dufossé L, Galaup P, Carlet E, Flamin C, Valla A (2005) Spectrocolorimetry in the CIE L∗ A∗ B∗ color space as useful tool for monitoring the ripening process and the quality of PDO red-smear soft cheeses. Food Res Int 38(8–9):919–924

    Google Scholar 

  • Dugat-Bony E, Straub C, Teissandier A, Onésime D, Loux V, Monnet C, Irlinger F, Landaud S, Leclercq-Perlat M-N, Bento P, Fraud S, Gibrat J-F, Aubert J, Fer F, Guédon E, Pons N, Kennedy S, Beckerich J-M, Swennen D, Bonnarme P (2015) Overview of a surface-ripened cheese community functioning by meta-omics analyses edited by D. Ercolini. PLoS One 10(4):e0124360

    PubMed  PubMed Central  Google Scholar 

  • FAOSTAT (2017) FAOSTAT database on agriculture. FAO (Food and Agriculture Organization of the United Nations), Rome

    Google Scholar 

  • Fernández-Bodega Á, Álvarez-Álvarez R, Liras P, Martín JF (2017) Silencing of a second dimethylallyltryptophan synthase of Penicillium roqueforti reveals a novel clavine alkaloid gene cluster. Appl Microbiol Biotechnol 101:6111–6121

    PubMed  Google Scholar 

  • Fickers P, Fudalej F, Le Dall MT, Casaregola S, Gaillardin C, Thonart P, Nicaud JM (2005) Identification and characterisation of LIP7 and LIP8 genes encoding two extracellular triacylglycerol lipases in the yeast Yarrowia lipolytica. Fungal Genet Biol 42(3):264–274

    CAS  PubMed  Google Scholar 

  • Fox PE, McSweeney PLH, Cogan TM, Timothy M, Guinee TP, Timothy P (2000) Fundamentals of cheese science, 1st edn. Springer, Boston

    Google Scholar 

  • Fox PF, McSweeney PLH, Cogan TM, Guinee TP (2004) Cheese: chemistry, physics and microbiology, vol 1. General aspects. Elsevier, Burlington

    Google Scholar 

  • García-Estrada C, Martín JF (2016) Biosynthetic gene clusters for relevant secondary metabolites produced by Penicillium roqueforti in blue cheeses. Appl Microbiol Biotechnol 100:8371–8384

    Google Scholar 

  • Garcia-Estrada C, Ullán RV, Albillos SM, Fernández-Bodega MA, Durek P, von Döhren H, Martín JF (2011) A single cluster of coregulated genes encodes the biosynthesis of the mycotoxins roquefortine C and meleagrin in Penicillium chrysogenum. Chem Biol 18(11):1499–1512

    Google Scholar 

  • Ghosh BC, Bockelmann W, Heller KJ (2009) Casein degradation by enzymes of micro-organisms isolated from surface-ripened smear cheese. Milchwissenschaft 64:55–57

    CAS  Google Scholar 

  • Guimarães PMR, Teixeira JA, Domingues L (2010) Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnol Adv 28:375–384

    PubMed  Google Scholar 

  • Harbutt J (2009) World cheese book. Penguin, London

    Google Scholar 

  • Hidalgo PI, Ullán RV, Albillos SM, Montero O, Fernández-Bodega MÁ, García-Estrada C, Fernández-Aguado M, Martín JF (2014) Molecular characterization of the PR-toxin gene cluster in Penicillium roqueforti and Penicillium chrysogenum: cross talk of secondary metabolite pathways. Fungal Genet Biol 62:11–24

    CAS  PubMed  Google Scholar 

  • Hidalgo PI, Poirier E, Ullán RV, Piqueras J, Meslet-Cladière L, Coton E, Coton M (2017) Penicillium roqueforti PR toxin gene cluster characterization. Appl Microbiol Biotechnol 101:2043–2056

    CAS  PubMed  Google Scholar 

  • Horne DS (1998) Casein interactions: casting light on the black boxes, the structure in dairy products. Int Dairy J 8(3):171–177

    CAS  Google Scholar 

  • Hui YH, Meunier-Goddik L, Josephsen J, Nip W-K, Stanfield PS (2004) Handbook of food and beverage fermentation technology, Food Science and Technology 134:392–93. CRC Press, Boca Raton

    Google Scholar 

  • Humbert G, Alais C (1979) Review of the progress of dairy science: the milk proteinase system. J Dairy Res 46:559–571

    CAS  PubMed  Google Scholar 

  • Hymery N, Vasseur V, Coton M, Mounier J, Jany JL, Barbier G, Coton E (2014) Filamentous fungi and mycotoxins in cheese: a review. Compr Rev Food Sci Food Saf 13:437

    CAS  Google Scholar 

  • Kademi A, Lee B, Houde A (2003) Production of heterologous microbial lipases by yeasts. Indian J Biotechnol 2(3):346–355

    CAS  Google Scholar 

  • Kosalková K, Domínguez-Santos R, Coton M, Coton E, García-Estrada C, Liras P, Martín JF (2015) A natural short pathway synthesizes roquefortine C but not meleagrin in three different Penicillium roqueforti strains. Appl Microbiol Biotechnol 99:7601–7612

    PubMed  Google Scholar 

  • Kumura H, Satoh M, Machiya T, Hosono M, Hayakawa T, Wakamatsu J-i (2019) Lipase and protease production of dairy Penicillium sp. on milk-protein-based solid substrates. Int J Dairy Technol 72(3):403–408. 1471-0307.12597

    CAS  Google Scholar 

  • Lanciotti R, Vannini L, Lopez CC, Gobbetti M, Elisabetta Guerzoni M (2005) Evaluation of the ability of Yarrowia lipolytica to impart strain-dependent characteristics to cheese when used as a ripening adjunct. Int J Dairy Technol 58:89–99

    CAS  Google Scholar 

  • Law BA, Goodenough PW (1995) Enzymes in milk and cheese production. In: Enzymes in food processing. Springer, Boston, pp 114–143

    Google Scholar 

  • Law BA, Mulholland F (1995) Enzymology of lactococci in relation to flavour development from milk proteins. Int Dairy J 5(8):833–854

    CAS  Google Scholar 

  • Leclercq-Perlat M-N, Buono F, Lambert D, Latrille E, Spinnler HE, Corrieu G (2004) Controlled production of Camembert-type cheeses. Part I: Microbiological and physicochemical evolutions. J Dairy Res 71(3):346–354

    Google Scholar 

  • Leclercq-Perlat M-N, Oumer A, Bergere J-L, Spinnler H-E, Corrieu G (1999) Growth of Debaryomyces hansenii ona bacterial surface-ripened soft cheese. J Dairy Res 66:271–281

    Google Scholar 

  • Lessard M-H, Viel C, Boyle B, St-Gelais D, Labrie S (2014) Metatranscriptome analysis of fungal strains Penicillium camemberti and Geotrichum candidum reveal cheese matrix breakdown and potential development of sensory properties of ripened camembert-type cheese. BMC Genomics 15:235

    PubMed  PubMed Central  Google Scholar 

  • Lodi T, Alberti A, Guiard B, Ferrero I (1999) Regulation of the Saccharomyces cerevisiae DLD1 gene encoding the mitochondrial protein D-lactate ferricytochrome c oxidoreductase by HAP1 and HAP2/3/4/5. Mol Gen Genet 262:623–632

    CAS  PubMed  Google Scholar 

  • Madzak C, Tréton B, Blanchin-Roland S (2000) Strong hybrid promoters and integrative expression/secretion vectors for quasi-constitutive expression of heterologous proteins in the yeast Yarrowia lipolytica. J Mol Microbiol Biotechnol 2(2):207–216

    CAS  PubMed  Google Scholar 

  • Maggio-Hall LA, Keller NP (2004) Mitochondrial β-oxidation in Aspergillus nidulans. Mol Microbiol 54(5):1173–1185

    CAS  PubMed  Google Scholar 

  • Maldonado RR, Lopes DB, Aguiar-Oliveira E, Kamimura ES, Macedo GA (2017) A review on Geotrichum lipases: production, purification, immobilization and applications. Chem Biochem Eng Q J 30(4):439–454

    Google Scholar 

  • Mansour S, Beckerich JM, Bonnarme P (2008) Lactate and amino acid catabolism in the cheese-ripening yeast Yarrowia lipolytica. Appl Environ Microbiol 74(21):6505–6512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall RJ (2002) Beer: quality, safety and nutritional aspects. J Hum Nutr Diet 15(5):391

    Google Scholar 

  • McSweeney PLH, Ottogalli G, Fox PF (2004) Diversity of cheese varieties: an overview. Cheese 2:1–23

    Google Scholar 

  • Mohanty AK, Mukhopadhyay UK, Grover S, Batish VK (1999) Bovine chymosin: production by RDNA technology and application in cheese manufacture. Biotechnol Adv 17:205–217

    CAS  PubMed  Google Scholar 

  • Mojsov K (2013) Use of enzymes in wine making: a review. Int J Manag IT Eng 3(9):112–127

    Google Scholar 

  • Monnet C, Dugat-Bony E, Swennen D, Beckerich J-M, Irlinger F, Fraud S, Bonnarme P (2016) Investigation of the activity of the microorganisms in a reblochon-style cheese by metatranscriptomic analysis. Front Microbiol 7:536

    PubMed  PubMed Central  Google Scholar 

  • Mounier J, Rea MC, O’Connor PM, Fitzgerald GF, Cogan TM (2007) Growth characteristics of Brevibacterium, Corynebacterium, Microbacterium, and Staphylococcus spp. isolated from surface-ripened cheese. Appl Environ Microbiol 73:7732–7739

    Google Scholar 

  • Mounier J, Coton M, Irlinger F, Landaud S, Bonnarme P (2017) Smear-ripened cheeses. Elsevier, pp 955–996. Academic Press

    Google Scholar 

  • Miller SM, & Magasanik BORIS (1990) Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism in Saccharomyces cerevisiae. J Bacteriol 172(9):4927–4935

    Google Scholar 

  • Mulholland, Law, (1994) Peptidases from lactococci and secondary proteolysis of milk proteins, In biochemistry of milk proteins, eds. A.T. Andrews & J. Varley, Royal Society of Chemistry, Cambridge, pp 83–93

    Google Scholar 

  • Nevalainen KMH, Te’o VSJ, Bergquist PL (2005) Heterologous protein expression in filamentous fungi. Trends Biotechnol 23:468–474

    CAS  PubMed  Google Scholar 

  • Pearce C (1997) Advances in applied microbiology, vol 44. Springer

    Google Scholar 

  • Pignede G, Wang HJ, Fudalej F, Seman M, Gaillardin C, Nicaud JM (2000) Autocloning and amplification of LIP2 in Yarrowia lipolytica. Appl Environ Microbiol 66:3283–3289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pollock JRA (1979) Brewing science. Academic Press, London

    Google Scholar 

  • Polonsky J, Merrien MA, Scott PM (1977) Roquefortine and isofumigaclavine alkaloids from Penicillium roqueforti. Ann Nutr Aliment 31(4–6):963–968

    CAS  PubMed  Google Scholar 

  • Products, F. Mulholland-Biochemistry of Milk and undefined 1994 (n.d.) Peptidases from lactococci and secondary proteolysis. Books.Google.Com

  • Ries L, Pullan ST, Delmas S, Malla S, Blythe MJ, Archer DB (2013) Genome-wide transcriptional response of Trichoderma reesei to lignocellulose using RNA sequencing and comparison with Aspergillus niger. BMC genomics 14(1):541

    Google Scholar 

  • Rojas-Aedo JF, Gil-Durán C, Del-Cid A, Valdés N, Pamela Á, Vaca I, García-Rico RO, Levicán G, Tello M, Chávez R (2017) The biosynthetic gene cluster for andrastin a in Penicillium roqueforti. Front Microbiol 8:813

    PubMed  PubMed Central  Google Scholar 

  • Rosenberg M, Altemueller A (2001) Accumulation of free L-glutamic acid in full- and reduced-fat cheddar cheese ripened at different time/temperature conditions. LWT Food Sci Technol 34(5):279–287

    CAS  Google Scholar 

  • Roth E, Schwenninger SM, Hasler M, Eugster-Meier E, Lacroix C (2010) Population dynamics of two antilisterial cheese surface consortia revealed by temporal temperature gradient gel electrophoresis. BMC Microbiol 10(1):74

    PubMed  PubMed Central  Google Scholar 

  • Seratlić SV, Miloradović ZN, Radulović ZT, Maćej OD (2011) The effect of two types of mould inoculants on the microbiological composition, physicochemical properties and protein hydrolysis in two Gorgonzola-type cheese varieties during ripening. Int J Dairy Technol 64(3):408–416

    Google Scholar 

  • Sinsabaugh RS (1994) Enzymic analysis of microbial pattern and process. Biol Fertil Soils 17(1):69–74

    CAS  Google Scholar 

  • Sørensen LM, Gori K, Petersen MA, Jespersen L, Arneborg N (2011) Flavour compound production by Yarrowia lipolytica, Saccharomyces cerevisiae and Debaryomyces hansenii in a cheese-surface model. Int Dairy J 21:970–978

    Google Scholar 

  • Sreekrishna K, Dickson RC (1985) Construction of strains of Saccharomyces cerevisiae that grow on lactose. Proc Natl Acad Sci U S A 82(23):7909–7913

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torrent C, Gil-Durán C, Rojas-Aedo JF, Medina E, Vaca I, Castro P, García-Rico RO, Cotoras M, Mendoza L, Levicán G, Chávez R (2017) Role of Sfk1 gene in the filamentous fungus Penicillium roqueforti. Front Microbiol 8:2424

    Google Scholar 

  • Trotter PJ (2001) The genetics of fatty acid metabolism in Saccharomyces cerevisiae. Annu Rev Nutr 21:97–119

    CAS  PubMed  Google Scholar 

  • Tymoczko JL, Berg JM, Stryer L (2002) Biochemistry, 5th edn. Freeman, New York

    Google Scholar 

  • Vernet T, Ziomek E, Recktenwald A, Schrag JD, De Montigny C, Tessier DC, Thomas DY, Cygler M (1993) Cloning and expression of Geotrichum candidum lipase II gene in yeast: probing of the enzyme active site by site-directed mutagenesis. J Biol Chem 268(35):26212–26219

    CAS  PubMed  Google Scholar 

  • Xie Y, Chou LS, Cutler A, Weimer B (2004) DNA macroarray profiling of Lactococcus lactis subsp. lactis IL1403 gene expression during environmental stresses. Appl Environ Microbiol 70(11):6738–6747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu XJ, Li HJ, Li J, Chi ZM (2010a) Overexpression of acid protease of Saccharomycopsis fibuligera in Yarrowia lipolytica and characterization of the recombinant acid protease for skimmed milk clotting. Biotechnol Bioprocess Eng 15:467–475

    CAS  Google Scholar 

  • Yu XJ, Madzak C, Li HJ, Chi ZM, Li J (2010b) Surface display of acid protease on the cells of Yarrowia lipolytica for milk clotting. Appl Microbiol Biotechnol 87:669–677

    CAS  PubMed  Google Scholar 

  • Yu XJ, Chi Z, Wang F, Li J, Chi ZM, Madzak C (2013) Expression of the acid protease gene from Saccharomycopsis fibuligera in the marine-derived Yarrowia lipolytica for both milk clotting and single cell protein production. Appl Biochem Biotechnol 169:1993–2003

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myeong-Hyeon Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rathnayake, A.U. et al. (2020). Fungal Genes Encoding Enzymes Used in Cheese Production and Fermentation Industries. In: Hesham, AL., Upadhyay, R., Sharma, G., Manoharachary, C., Gupta, V. (eds) Fungal Biotechnology and Bioengineering. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-41870-0_13

Download citation

Publish with us

Policies and ethics