Skip to main content
Log in

Fermentative production of enantiomerically pure S-1,2-propanediol from glucose by engineered E. coli strain

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The pure stereoisomers of 1,2-propanediol (1,2-PDO) could be used as starting materials to synthesize high value-added specialty chemicals and chiral pharmaceutical products. As the stereoisomers of 1,2-PDO cannot be obtained by traditional chemical synthesis processes, biotechnological processes have gained increasing attention. However, to our knowledge, the production of S-1,2-PDO directly from glucose has not been previously reported. In this study, we demonstrate a novel artificial pathway to convert l-lactic acid to S-1,2-PDO and its integration into the genome of Escherichia coli strain BW25113∆poxB with synchronous deletion of genes responsible for branch metabolic pathways from glucose. l-lactate production was increased by replacing the native d-lactate dehydrogenase with the l-lactate dehydrogenase from Bacillus coagulans. The methylglyoxal bypass pathway was blocked to avoid synthesis of a racemic mixture of d- and l-lactate and prevent the accumulation of methylglyoxal, a toxic intermediate. To further improve the yield of S-1,2-PDO, a novel cofactor regeneration system was introduced by combining pyruvate decarboxylase and acetaldehyde-CoA dehydrogenase II to simultaneously regenerate NADH and the CoA donor of acetyl-CoA for the lactate conversion pathway. Finally, 13.7 mM S-1,2-PDO with >99 % enantiomeric purity was directly produced from glucose by disrupting the major carbon-competing pathways and strengthening the lactate transformation pathway. This study demonstrates the first attempt to synthesize S-1,2-PDO by direct fermentation of glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altaras N, Cameron D (1999) Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. Appl Environ Microbiol 65:1180–1185

    PubMed  PubMed Central  CAS  Google Scholar 

  • Altaras N, Cameron D (2000) Enhanced production of (R)-1,2-propanediol by metabolically engineered Escherichia coli. Biotechnol Prog 16:940–946

    Article  PubMed  CAS  Google Scholar 

  • Badía J, Ros J, Aguilar J (1985) Fermentation mechanism of fucose and rhamnose in Salmonella typhimurium and Klebsiella pneumoniae. J Bacteriol 161:435–437

    PubMed  PubMed Central  Google Scholar 

  • Baldomà L, Aguilar J (1987) Involvement of lactaldehyde dehydrogenase in several metabolic pathways of Escherichia coli K12. J Biol Chem 262:13991–13996

    PubMed  Google Scholar 

  • Bennett GN, San KY (2001) Microbial formation, biotechnological production and applications of 1,2-propanediol. Appl Microbiol Biotechnol 55:1–9

    Article  PubMed  CAS  Google Scholar 

  • Berríos-Rivera SJ, San KY, Bennett GN (2003) The effect of carbon sources and lactate dehydrogenase deletion on 1,2-propanediol production in Escherichia coli. J Ind Microbiol Biotechnol 30:34–40

    Article  PubMed  CAS  Google Scholar 

  • Booth IR, Ferguson GP, Miller S, Li C, Gunasekera B, Kinghorn S (2003) Bacterial production of methylglyoxal: a survival strategy or death by misadventure? Biochem Soc Trans 31:1406–1408

    Article  PubMed  CAS  Google Scholar 

  • Boronat A, Aguilar J (1981) Metabolism of L-fucose and L-rhamnose in Escherichia coli: differences in induction of propanediol oxidoreductase. J Bacteriol 147:181–185

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cameron DC, Altaras NE, Hoffman ML, Shaw AJ (1998) Metabolic engineering of propanediol pathways. Biotechnol Prog 14:116–125

    Article  PubMed  CAS  Google Scholar 

  • Cameron DC, Cooney CL (1986) A novel fermentation: the production of (R)-1,2-propanediol and acetol by Clostridium thermosaccharolyticum. Bioresour Technol 4:651–654

    CAS  Google Scholar 

  • Clomburg J, Gonzalez R (2011) Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol. Biotechnol Bioeng 108:867–879

    Article  PubMed  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hacking AJ, Lin ECC (1976) Disruption of the fucose pathway as a consequence of genetic adaptation to propanediol as a carbon source in Escherichia coli. J Bacteriol 126:1166–1172

    PubMed  PubMed Central  CAS  Google Scholar 

  • Herrera S (2004) Industrial biotechnology—a chance at redemption. Nat Biotechnol 22:671–678

    Article  PubMed  CAS  Google Scholar 

  • Heinl S, Wibberg D, Eikmeyer F, Szczepanowski R, Blom J, Linke B, Goesmann A, Grabherr R, Schwab H, Pühler A (2012) Insight into the completely annotated genome of Lactobacillus buchneri CD034, a strain isolated from stable grass silage. J Biotechnol 161:153–166

    Article  PubMed  CAS  Google Scholar 

  • Jantama K, Zhang X, Moore JC, Shanmugam KT, Svoronos SA, Ingram LO (2008) Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnol Bioeng 101:881–893

    Article  PubMed  CAS  Google Scholar 

  • Jain R, Yan Y (2011) Dehydratase mediated 1-propanol production in metabolically engineered Escherichia coli. Microb Cell Fact 10:97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jain R, Sun X, Yuan Q, Yan Y (2015a) Systematically engineering Escherichia coli for enhanced production of 1,2-propanediol and 1-propanol. ACS Synth Biol 4:746–756

    Article  PubMed  CAS  Google Scholar 

  • Jain R, Huang J, Yuan Q, Yan Y (2015b) Engineering microaerobic metabolism of E. coli for 1,2-propanediol production. J Ind Microbiol Biotechnol 42:1049–1055

    Article  PubMed  CAS  Google Scholar 

  • Jiang X, Xue YF, Wang AY, Wang LM, Zhang GM, Zeng QT, Yu B, Ma YH (2013) Efficient production of polymer-grade L-lactate by an alkaliphilic Exiguobacterium sp. strain under nonsterile open fermentation conditions. Bioresour Technol 143:665–668

    Article  PubMed  CAS  Google Scholar 

  • Lee SJ, Ko JH, Kang HY, Lee Y (2006) Coupled expression of MhpE aldolase and MhpF dehydrogenase in Escherichia coli. Biochem Biophys Res Commun 346:1009–1015

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Wang LM, Ju JS, Yu B, Ma YH (2013) Efficient production of polymer-grade D-lactate by Sporolactobacillus laevolacticus DSM442 with agricultural waste cottonseed as the sole nitrogen source. Bioresour Technol 142:186–191

    Article  PubMed  CAS  Google Scholar 

  • Nishino N, Yoshida M, Shiota H, Sakaguchi E (2003) Accumulation of 1,2-propanediol and enhancement of aerobic stability in whole crop maize silage inoculated with Lactobacillus buchneri. J Appl Microbiol 94:800–807

    Article  PubMed  CAS  Google Scholar 

  • Niu W, Guo J (2015) Stereospecific microbial conversion of lactic acid into 1,2-propanediol. ACS Synth Biol 4:378–382

    Article  PubMed  CAS  Google Scholar 

  • Oude Elferink SJ, Krooneman J, Gottschal JC, Spoelstra SF, Faber F, Driehuis F (2001) Anaerobic conversion of lactic acid to acetic acid and 1,2-propanediol by Lactobacillus buchneri. Appl Environ Microbiol 67:125–132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng LL, Wang LM, Che CC, Yang G, Yu B, Ma YH (2013) Bacillus sp. strain P38: an efficient producer of L-lactate from cellulosic hydrolysate, with high tolerance for 2-furfural. Bioresour Technol 149:169–176

    Article  PubMed  CAS  Google Scholar 

  • Raj KC, Talarico LA, Ingram LO, Maupin-Furlow JA (2002) Cloning and characterization of the Zymobacter palmae pyruvate decarboxylase gene (pdc) and comparison to bacterial homologues. Appl Environ Microbiol 68:2869–2876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shelley S (2007) A renewable route to propylene glycol. Chem Eng Prog 103:6–9

    CAS  Google Scholar 

  • Simon ES, Whitesides M, Cameron DC, Weitz DJ, Cooney CL (1987) A combined microbial/chemical synthesis of (+)-(R)-methyloxirane having high enantiomeric excess. J Org Chem 52:4042–4044

    Article  CAS  Google Scholar 

  • Sanchez-Rivera F, Cameron DC, Cooney CL (1987) Influence of environmental factors in the production of 1,2-propanediol by Clostridium thermosaccharolyticum. Biotechnol Lett 9:449–454

    Article  Google Scholar 

  • Slusarczyk H, Felber S, Kula MR, Pohl M (2000) Stabilization of NAD-dependent formate dehydrogenase from Candida boidinii by site-directed mutagenesis of cysteine residues. Eur J Biochem 267:1280–1289

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Shen X, Jain R, Lin Y, Wang J, Sun J, Yan Y, Yuan Q (2015) Synthesis of chemicals by metabolic engineering of microbes. Chem Soc Rev 44:3760–3785

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Onishi H (1968) Aerobic dissimilation of L-rhamnose and the production of L-rhamnonic acid and 1, 2-propanediol by yeasts. Agric Biol Chem 32:888–893

    Article  CAS  Google Scholar 

  • Totemeyer S, Booth NA, Nichols WW, Dunbar B, Booth IR (1998) From famine to feast: the role of methylglyoxal production in Escherichia coli. Mol Microbiol 27:553–562

    Article  PubMed  CAS  Google Scholar 

  • Turner KW, Roberton AM (1979) Xylose, arabinose, and rhamnose fermentation by Bacteroides ruminicola. Appl Environ Microbiol 38:7–12

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wang LM, Cai YM, Zhu LF, Guo HL, Yu B (2014) Major role of NAD-dependent lactate dehydrogenases in high optically pure L-lactic acid production by thermophilic Bacillus coagulans. Appl Environ Microbiol 80:7134–7141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weimer PJ (1984) Fermentation of 6-deoxyhexoses by Bacillus macerans. Appl Environ Microbiol 47:263–267

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yang TH, Kim TW, Kang HO, Lee SH, Lee EJ, Lim SC, Oh SO, Song AJ, Park SJ, Lee SY (2010) Biosynthesis of polylactic acid and its copolymers using evolved propionate CoA transferase and PHA synthase. Biotechnol Bioeng 105:150–160

    Article  PubMed  CAS  Google Scholar 

  • Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R, Estadilla J, Teisan S, Schreyer HB, Andrae S, Yang TH, Lee SY, Burk MJ, Van Dien S (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7:445–452

    Article  PubMed  CAS  Google Scholar 

  • Zelcbuch L, Antonovsky N, Bar-Even A, Levin-Karp A, Barenholz U, Dayagi M, Liebermeister W, Flamholz A, Noor E, Amram S, Brandis A, Bareia T, Yofe I, Jubran H, Milo R (2013) Spanning high-dimensional expression space using ribosome-binding site combinatorics. Nucleic Acids Res 41:e98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Basic Research Program of China (2011CBA00800), the Key Deployment Projects of Chinese Academy of Sciences (KGZD-EW-606), the National Natural Science Foundation of China (21466007), and the Project of Guangxi Provincial Science & Technology Development, China (14125008-2-22). BY is supported by the Youth Innovation Promotion Association, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Yu.

Ethics declarations

The authors confirm that principles of ethical and professional conduct have been followed in this research and in the preparation of this manuscript.

Conflict of interest

The authors do not have potential conflict of interest to disclose.

Additional information

Lingfeng Zhu and Xiangchen Guan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Guan, X., Xie, N. et al. Fermentative production of enantiomerically pure S-1,2-propanediol from glucose by engineered E. coli strain. Appl Microbiol Biotechnol 100, 1241–1251 (2016). https://doi.org/10.1007/s00253-015-7034-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7034-y

Keywords

Navigation