Skip to main content
Log in

Structural diversity and possible functional roles of free fatty acids of the novel soil isolate Streptomyces sp. NP10

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Herein, a novel soil bacterium Streptomyces sp. NP10 able to grow outside usual streptomycetes optimum conditions (e.g., at 4 °C, pH 9 and high NaCl concentration), exhibiting atypical hemolytic, DNAse, and cellulolytic activities, is described. This strain produces and excretes into the growth medium large amounts of free long-chain fatty acids (FAs). A concurrent lipidomics study revealed a large structural diversity of FAs with over 50 different n- and branched-chain, (un)saturated, and cyclopropane FAs (C7–C30) produced by this strain. Two of these, i-17:0cy9-10 and a-18:0cy9-10, represent new natural products and the first ever identified branched cyclopropane FAs. Both free and bound lipid profiles of Streptomyces sp. NP10 were dominated by saturated branched chain FAs (i-14:0, a-15:0, and i-16:0). Although these free FAs showed only a moderate antimicrobial activity, our results suggest that they could have an ecophysiological role in interspecies signaling with another soil microorganism Pseudomonas aeruginosa. This work represents the first comprehensive report on the structural diversity and complexity of the free FA pool in Streptomyces. A naturally occurring streptomycete, such as Streptomyces sp. NP10, which secretes significant amounts of free long-chain FAs (non-cytotoxic) into the medium, could be useful in microbial biodiesel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aerts HAJ, Jacobs PA (2004) Epoxide yield determination of oils and fatty acid methyl esters using 1H NMR. J Am Oil Chem Soc 81:841–846. doi:10.1007/s11746-004-0989-1

    Article  CAS  Google Scholar 

  • Agar G, Adiguzel A, Baris O, Gulluce M, Sahin F (2008) Phenotypic and genetic variation of some Salvia species grown in eastern Anatolia region of Turkey. Asian J Chem 20:3935–3944

    CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arabolaza A, Rodriguez E, Altabe S, Alvarez H, Gramajo H (2008) Multiple pathways for triacylglycerol biosynthesis in Streptomyces coelicolor. Appl Environ Microbiol 74:2573–2582. doi:10.1128/AEM. 02638-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arabolaza A, D’Angelo M, Comba S, Gramajo H (2010) FasR, a novel class of transcriptional regulator, governs the activation of fatty acid biosynthesis genes in Streptomyces coelicolor. Mol Microbiol 78:47–63. doi:10.1111/j.1365-2958.2010.07274.x

    CAS  PubMed  Google Scholar 

  • Bengsch E, Perly B, Deleuze C, Valero A (1986) A general rule for the assignment of the carbon-13 NMR peaks in fatty acid chains. J Magn Reson 68:1–13. doi:10.1016/0022-2364(86)90311-2

    CAS  Google Scholar 

  • Bernard M (2014) Molecular cloning and functional characterization of genes involved in the biosynthesis of polyunsaturated fatty acids in oat (Avena sativa L.). Master of Science Dissertation, University of Saskatchewan, Canada

    Google Scholar 

  • Bhave SV, Shanbhag PV, Sonawane SK, Parab RR, Mahajan GB (2013) Isolation and characterization of halotolerant Streptomyces radiopugnans from Antarctica soil. Lett Appl Microbiol 56:348–355. doi:10.1111/lam.12054

    Article  CAS  PubMed  Google Scholar 

  • Biermann U, Metzger JO (2004) Alkylation of alkenes: ethylaluminum sesquichloride-mediated hydro-alkyl additions with alkyl chloroformates and di-tert-butylpyrocarbonate. J Am Chem Soc 126:10319–10330. doi:10.1021/ja048904y

    Article  CAS  PubMed  Google Scholar 

  • Book AJ, Lewin GR, McDonald BR, Takasuka TE, Doering DT, Adams AS, Blodgett JA, Clardy J, Raffa KF, Fox BG, Currie CR (2014) Cellulolytic Streptomyces strains associated with herbivorous insects share a phylogenetically linked capacity to degrade lignocellulose. Appl Environ Microbiol 80:4692–4701. doi:10.1128/AEM. 01133-14

    Article  PubMed Central  PubMed  Google Scholar 

  • Boon JJ, van de Graaf B, Schuyl PJW, de Lange F, de Leeuw JW (1977) The mass spectrometry of iso and anteiso monoenoic fatty acids. Lipids 12:717–721. doi:10.1007/BF02570901

    Article  CAS  PubMed  Google Scholar 

  • Challis GL, Hopwood DA (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci U S A 100 (Suppl 2):14555–14561. doi:10.1073/pnas.1934677100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chan DI, Vogel HJ (2010) Current understanding of fatty acid biosynthesis and the acyl carrier protein. Biochem J 430:1–19. doi:10.1042/BJ20100462

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Qin Z (2011) Development of a gene cloning system in a fast-growing and moderately thermophilic Streptomyces species and heterologous expression of Streptomyces antibiotic biosynthetic gene clusters. BMC Microbiol 11:243–252. doi:10.1186/1471-2180-11-243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Christie WW, Brechany EY, Marekov IN, Stefanov KL, Andreev SN (1994) The fatty acids of the sponge Hymeniacidon sanguinea from the Black Sea. Comp Biochem Physiol B 109:245–252. doi:10.1016/0305-0491(94)90008-6

    Article  Google Scholar 

  • Clejan S, Krulwich TA, Mondrus KR, Seto-Young D (1986) Membrane lipid composition of obligately and facultatively alkalophilic strains of Bacillus spp. J Bacteriol 168:334–340

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cole J, Wang Q, Cardenas E, Fish J, Chai B, Farris R, Kulam-Syed-Mohideen A, McGarrell D, Marsh T, Garrity G, Tiedje J (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:141–145. doi:10.1093/nar/gkn879

    Article  Google Scholar 

  • Davies DG, Marques CN (2009) A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191:1393–1403. doi:10.1128/JB.01214-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dembitsky VM, Rezanka T, Kashin AG (1993) Comparative study of the endemic freshwater fauna of Lake Baikal—II. Unusual lipid composition of two sponge species Baicalospongia bacillifera and Baicalospongia intermedia (family Lubomirskiidae, class Demospongiae). Comp Biochem Physiol B 106:825–831. doi:10.1016/0305-0491(93)90037-6

  • Dembitsky VM, Rezanka T, Kashin AG (1994) Comparative study of the endemic freshwater fauna of Lake Baikal—VI. Unusual fatty acid and lipid composition of the endemic sponge Lubomirskia baicalensis and its amphipod crustacean parasite Brandtia (Spinacanthus) parasitica. Comp Biochem Physiol B 109:415–426. doi:10.1016/0305-0491(94)90024-8

    Google Scholar 

  • Desbois AP, Smith VJ (2010) Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol 85:1629–1642. doi:10.1007/s00253-009-2355-3

    Article  CAS  PubMed  Google Scholar 

  • Destaillats F, Wolff RL, Angers P (2002) Saturated and unsaturated anteiso-C19 acids in the seed lipids from Hesperopeuce mertensiana (Pinaceae). Lipids 37:325–328. doi:10.1007/s11745-002-0898-y

    Article  CAS  PubMed  Google Scholar 

  • Dickschat JS, Bode HB, Kroppenstedt RM, Müller R, Schulz S (2005) Biosynthesis of iso-fatty acids in myxobacteria. Org Biomol Chem 3:2824–2831. doi:10.1039/B504889C

    Article  CAS  PubMed  Google Scholar 

  • Dickschat JS, Bruns H, Riclea R (2011) Novel fatty acid methyl esters from the actinomycete Micromonospora aurantiaca. Beilstein J Org Chem 7:1697–1712. doi:10.3762/bjoc.7.200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Djokic L, Narancic T, Nikodinovic-Runic J, Savic M, Vasiljevic B (2011) Isolation and characterization of four novel Gram-positive bacteria associated with the rhizosphere of two endemorelict plants capable of degrading a broad range of aromatic substrates. Appl Microbiol Biotechnol 91:1227–1238. doi:10.1007/s00253-011-3426-9

    Article  CAS  PubMed  Google Scholar 

  • Drake DR, Brogden KA, Dawson DV, Wertz PW (2008) Thematic review series: skin lipids. Antimicrobial lipids at the skin surface. J Lipid Res 49:4–11. doi:10.1194/jlr. R700016-JLR200

    Article  CAS  PubMed  Google Scholar 

  • Duque C, Cepeda N, Martínez A (1993) The steryl ester and phospholipid fatty acids of the sponge Agelas conifera from the Colombian Caribbean. Lipids 28:767–769. doi:10.1007/BF02536002

    Article  CAS  Google Scholar 

  • Florova G, Kazanina G, Reynolds KA (2002) Enzymes involved in fatty acid and polyketide biosynthesis in Streptomyces glaucescens: role of FabH and FabD and their acyl carrier protein specificity. Biochemistry 41:10462–10471. doi:10.1021/bi0258804

    Article  CAS  PubMed  Google Scholar 

  • Gago G, Diacovich L, Arabolaza A, Tsai S-C, Gramajo H (2011) Fatty acid biosynthesis in actinomycetes. FEMS Microbiol Rev 35:475–497. doi:10.1111/j.1574-6976.2010.00259.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gangadhar A, Subbarao R, Lakshminarayana G (1988) Cyclopropanation of unsaturated fatty acid methyl esters using diazomethane and palladium(II) acetate. J Am Oil Chem Soc 65:601–606. doi:10.1007/BF02540687

    Article  CAS  Google Scholar 

  • Gorby YA, Beveridge TJ, Blakemore RP (1988) Characterization of the bacterial magnetosome membrane. J Bacteriol 170:834–841

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gross JH (2004) Mass spectrometry. A textbook. Springer, Berlin-Heidelberg

    Book  Google Scholar 

  • Hansen MB, Nielsen SE, Berg K (1989) Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 119:203–210. doi:10.1016/0022-1759(89)90397-9

    Article  CAS  PubMed  Google Scholar 

  • Harris RL, Davies NW, Nicol SC (2012) Chemical composition of odorous secretions in the Tasmanian short-beaked echidna (Tachyglossus aculeatus setosus). Chem Senses 37:819–836. doi:10.1093/chemse/bjs066

    Article  CAS  PubMed  Google Scholar 

  • Hertweck C (2009) The biosynthetic logic of polyketide diversity. Angew Chem Int Ed 48:4688–4716. doi:10.1002/anie.200806121

    Article  CAS  Google Scholar 

  • Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8:15–25. doi:10.1038/nrmicro2259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoischen C, Gura K, Luge C, Gumpert J (1997) Lipid and fatty acid composition of cytoplasmic membranes from Streptomyces hygroscopicus and its stable protoplast-type L form. J Bacteriol 179:3430–3436

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hopwood DA (1988) The Leeuwenhoek lecture, 1987. Towards an understanding of gene switching in Streptomyces, the basis of sporulation and antibiotic production. Proc R Soc Lond B Biol 235:121–138. doi:10.1098/rspb.1988.0067

    Article  CAS  Google Scholar 

  • Kaneda T (1991) Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 55:288–302

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A (2008) A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr Microbiol 57:503–507. doi:10.1007/s00284-008-9276-8

    Article  CAS  PubMed  Google Scholar 

  • Katayama T, Kanno M, Morita N, Hori T, Narihiro T, Mitani Y, Kamagata Y (2014) An oleaginous bacterium that intrinsically accumulates long-chain free fatty acids in its cytoplasm. Appl Environ Microbiol 80:1126–1131. doi:10.1128/AEM. 03056-13

    Article  PubMed Central  PubMed  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich

    Google Scholar 

  • Knief C, Altendorf K, Lipski A (2003) Linking autotrophic activity in environmental samples with specific bacterial taxa by detection of 13C-labelled fatty acids. Environ Microbiol 5:1155–1167. doi:10.1046/j.1462-2920.2003.00510.x

    Article  CAS  PubMed  Google Scholar 

  • Knothe G (2006) NMR characterization of dihydrosterculic acid and its methyl ester. Lipids 41:393–396. doi:10.1007/s11745-006-5110-x

    Article  CAS  PubMed  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow MM (eds) Nucleic acid techniques in bacterial systematic. Wiley, Chichester, pp 115–175

    Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi:10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Vanguru M, Moore DA, Kannan G, Terrill TH, Kouakou B (2012) Flavor compounds and quality parameters of chevon as influenced by Sericea Lespedeza hay. J Agric Food Chem 60:3934–3939. doi:10.1021/jf2050125

    Article  CAS  PubMed  Google Scholar 

  • Macmillan JB, Molinski TF (2005) Majusculoic acid, a brominated cyclopropyl fatty acid from a marine cyanobacterial mat assemblage. J Nat Prod 68:604–606. doi:10.1021/np049596k

    Article  CAS  PubMed  Google Scholar 

  • Mastronicolis SK, Arvanitis N, Karaliota A, Litos C, Stavroulakis G, Moustaka H, Tsakirakisa A, Heropoulos G (2005) Cold dependence of fatty acid profile of different lipid structures of Listeria monocytogenes. Food Microbiol 22:213–219. doi:10.1016/j.fm.2004.08.002

    Article  CAS  Google Scholar 

  • Mei S, Ni H-M, Manley S, Bockus A, Kassel KM, Luyendyk JP, Copple BL, Ding WX (2011) Differential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytes. J Pharmacol Exp Ther 339:487–498. doi:10.1124/jpet.111.184341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meng X, Shang H, Zheng Y, Zhang Z (2013) Free fatty acid secretion by an engineered strain of Escherichia coli. Biotechnol Lett 35:2099–2103. doi:10.1007/s10529-013-1305-4

    Article  CAS  PubMed  Google Scholar 

  • Metz PA, Omstead DR, Kaplan L, Liesch JM, Stearns RA, Van-Denheuvel WJ (1988) Characterization of a lipid-rich fraction synthesized by Streptomyces avermitilis. J Chromatogr 441:31–44. doi:10.1016/S0021-9673(01)84652-5

    Article  CAS  PubMed  Google Scholar 

  • Moghaddam MF, Motoba K, Borhan B, Pinot F, Hammock BD (1996) Novel metabolic pathways for linoleic and arachidonic acid metabolism. Biochim Biophys Acta 1290:327–339. doi:10.1016/0304-4165(96)00037-2

    Article  PubMed  Google Scholar 

  • Mohn T, Plitzko I, Hamburger M (2009) A comprehensive metabolite profiling of Isatis tinctoria leaf extracts. Phytochemistry 70:924–934. doi:10.1016/j.phytochem.2009.04.019

    Article  CAS  PubMed  Google Scholar 

  • Morkunas B, Galloway WR, Wright M, Ibbeson BM, Hodgkinson JT, O’Connell KM, Bartolucci N, Della Valle M, Welch M, Spring DR (2012) Inhibition of the production of the Pseudomonas aeruginosa virulence factor pyocyanin in wild-type cells by quorum sensing autoinducer-mimics. Org Biomol Chem 10:8452–8464. doi:10.1039/C2OB26501J

    Article  CAS  PubMed  Google Scholar 

  • Moss CW, Lambert-Fair MA (1990) Reevaluation of the cellular fatty acid composition of Legionella micdadei Bari 2/158. J Clin Microbiol 28:389–390

  • Nichols PD, Shaw PM, Johns RB (1985) Determination of the double bond position and geometry in monoenoic fatty acids from complex microbial and environmental samples by capillary GC-MS of their Diels-Alder adducts. J Microbiol Meth 3:311–319. doi:10.1016/0167-7012(85)90013-2

    Article  CAS  Google Scholar 

  • Nichols PD, Guckert JB, White DC (1986) Determination of monounsaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulphide adducts. J Microbiol Meth 5:49–55. doi:10.1016/0167-7012(86)90023-0

    Article  CAS  Google Scholar 

  • Nikolova N, Rezanka T, Nikolova-Damyanova B (2000) Fatty acid profiles of main lipid classes in adult Chrysomela vigintipunctata (Scopoli) (Coleopterai: Chrysomelidae). Z Naturforsch C 55:661–666

  • O’Loughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF, Bassler BL (2013) A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci U S A 110:17981–17986. doi:10.1073/pnas.1316981110

    Article  PubMed Central  PubMed  Google Scholar 

  • Pelz O, Chatzinotas A, Zarda-Hess A, Abraham W-R, Zeyer J (2001) Tracing toluene-assimilating sulfate-reducing bacteria using 13C-incorporation in fatty acids and whole-cell hybridization. FEMS Microbiol Ecol 38:123–131. doi:10.1111/j.1574-6941.2001.tb00890.x

    Article  CAS  Google Scholar 

  • Poerschmann J, Koschorreck M, Górecki T (2012) Organic matter in sediments of an acidic mining lake as assessed by lipid analysis. Part I: fatty acids. Sci Total Environ 414:614–623. doi:10.1016/j.scitotenv.2011.10.015

    Article  CAS  PubMed  Google Scholar 

  • Radulović N, Denić M, Stojanović-Radić Z, Skropeta D (2012) Fatty and volatile oils of the gypsywort Lycopus europaeus L. and the Gaussian-like distribution of its wax alkanes. J Am Oil Chem Soc 89:2165–2185. doi:10.1007/s11746-012-2118-7

    Article  Google Scholar 

  • Ricchi M, Odoardi MR, Carulli L, Anzivino C, Ballestri S, Pinetti A, Fantoni LI, Marra F, Bertolotti M, Banni S, Lonardo A, Carulli N, Loria P (2009) Differential effect of oleic and palmitic acid on lipid accumulation and apoptosis in cultured hepatocytes. J Gastroenterol Hepatol 24:830–840. doi:10.1111/j.1440-1746.2008.05733.x

    Article  CAS  PubMed  Google Scholar 

  • Rontani J-F, Zabeti N, Aubert C (2009) Double bond migration to methylidene positions during electron ionization mass spectrometry of branched monounsaturated fatty acid derivatives. J Am Soc Mass Spectrom 20:1997–2005. doi:10.1016/j.jasms.2009.07.020

    Article  CAS  PubMed  Google Scholar 

  • Rütters H, Sass H, Cypionka H, Rullkötter J (2001) Monoalkylether phospholipids in the sulfate-reducing bacteria Desulfosarcina variabilis and Desulforhabdus amnigenus. Arch Microbiol 176:435–442. doi:10.1007/s002030100343

  • Ryhage R, Stenhagen E (1960) Mass spectrometric studies. VI. Methyl esters of normal chain oxo-, hydroxy-, methoxy- and epoxy-acids. Ark Kemi 15:545–574

    CAS  Google Scholar 

  • Saddler GS, O’Donnell AG, Goodfellow M, Minnikin DE (1987) SIMCA pattern recognition in the analysis of streptomycete fatty acids. J Gen Microbiol 133:1137–1147. doi:10.1099/00221287-133-5-1137

    CAS  Google Scholar 

  • Santos S, Graça J (2014) Stereochemistry of C18 monounsaturated cork suberin acids determined by spectroscopic techniques including 1H-NMR multiplet analysis of olefinic protons. Phytochem Anal 25:192–200. doi:10.1002/pca.2491

    Article  CAS  PubMed  Google Scholar 

  • Skoko N, Vujovic J, Savic M, Papic N, Vasiljevic V, Ljubijankic G (2005) Construction of Saccharomyces cerevisiae strain FAV20 useful in detection of immunosuppressants produced by soil actinomycete. J Microbiol Meth 61:137–140. doi:10.1016/j.mimet.2004.11.007

    Article  CAS  Google Scholar 

  • Srisajjalertwaja S, Apichartsrangkoon A, Chaikham P, Chakrabandhu Y, Pathomrungsiyounggul P, Leksawasdi N, Supraditareporn W, Hirun S (2012) Color, capsaicin and volatile components of baked Thai green chili (Capsicum annuum Linn. var. Jak Ka Pat). J Agric Sci 4:75–84. doi:10.5539/jas.v4n12p75

    Google Scholar 

  • Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, del Cardayre SB, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559–562. doi:10.1038/nature08721

    Article  CAS  PubMed  Google Scholar 

  • Suthindhiran K, Kannabiran K (2009) Hemolytic activity of Streptomyces VITSDK1 spp. isolated from marine sediments in Southern India. J Mycol Med 19:77–86. doi:10.1016/j.mycmed.2009.01.001

    Article  Google Scholar 

  • Suutari M, Laakso S (1993) Signature GLC-MS ions in identification of Δ5- and Δ9-unsaturated iso- and anteiso-branched fatty acids. J Microbiol Meth 17:39–48. doi:10.1016/0167-7012(93)90077-U

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor J, Parkes J (1983) The cellular fatty acids of the sulphate-reducing bacteria, Desulfobacter sp., Desulfobulbus sp. and Desulfovibvio desulfuvicans. J Gen Microbiol 129:3303–3309. doi:10.1099/00221287-129-11-3303

    CAS  Google Scholar 

  • Thumar JT, Dhulia K, Singh SP (2010) Isolation and partial purification of an antimicrobial agent from halotolerant alkaliphilic Streptomyces aburaviensis strain Kut-8. World J Microbiol Biotechnol 26:2081–2087. doi:10.1007/s11274-010-0394-7

    Article  CAS  Google Scholar 

  • Tsydendambaev WD, Christie WW, Brechany EY, Vereshchagin AG (2004) Identification of unusual fatty acids of four alpine plant species from the Pamirs. Phytochemistry 65:2695–2703. doi:10.1016/j.phytochem.2004.08.021

    Article  CAS  PubMed  Google Scholar 

  • van Wezel GP, McDowall KJ (2011) The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28:1311–1333. doi:10.1039/C1NP00003A

    Article  PubMed  Google Scholar 

  • Vandamme P, Pot B, Gillis M, de Vos P, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438

    PubMed Central  CAS  PubMed  Google Scholar 

  • Veljković VB, Lakićević SH, Stamenković OS, Todorović ZB, Lazić ML (2006) Biodiesel production from tobacco (Nicotiana tabacum L.) seed oil with a high content of free fatty acids. Fuel 85:2671–2675. doi:10.1016/j.fuel.2006.04.015

    Article  Google Scholar 

  • Vyssotski M, Ryan J, Lagutin K, Wong H, Morgan X, Stott M (2012) A novel fatty acid, 12,17-dimethyloctadecanoic acid, from the extremophile Thermogemmatispora sp. (strain T81). Lipids 47:601–611. doi:10.1007/s11745-012-3668-z

    Article  CAS  PubMed  Google Scholar 

  • Zgoda JR, Porter JR (2001) A convenient microdilution method for screening natural products against bacteria and fungi. Pharm Biol 39:221–225. doi:10.1076/phbi.39.3.221.5934

    Article  CAS  Google Scholar 

  • Zhang Y-M, Rock CO (2008) Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 6:222–232. doi:10.1038/nrmicro1839

    Article  PubMed  Google Scholar 

  • Zheng CJ, Sohn MJ, Chi SW, Kim WG (2010) Methyl-branched fatty acids, inhibitors of enoyl-ACP reductase with antibacterial activity from Streptomyces sp. A251. J Microbiol Biotechnol 20:875–880. doi:10.4014/jmb.1001.01004

    Article  CAS  PubMed  Google Scholar 

  • Zouari N, Fakhfakh N, Zouari S, Sellami M, Abid M, Ayadi MA, Zaidi S, Neffati M (2011) Volatile and lipid analyses by gas chromatography/mass spectrometry and nutraceutical potential of edible wild Malva aegyptiaca L. (Malvaceae). Int J Food Sci Nutr 62:600–608. doi:10.3109/09637486.2011.564157

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Ministry of Education, Science and Technological Development of Serbia for the financial support (projects 172061 and 173048).

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niko S. Radulović.

Additional information

Tatjana Ilic-Tomic and Marija S. Genčić contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1008 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilic-Tomic, T., Genčić, M.S., Živković, M.Z. et al. Structural diversity and possible functional roles of free fatty acids of the novel soil isolate Streptomyces sp. NP10. Appl Microbiol Biotechnol 99, 4815–4833 (2015). https://doi.org/10.1007/s00253-014-6364-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6364-5

Keywords

Navigation