Skip to main content
Log in

Profile of bacterial communities in South African mine-water samples using Illumina next-generation sequencing platform

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Mine water is an example of an extreme environment that contains a large number of diverse and specific bacteria. It is imperative to gain an understanding of these bacterial communities in order to develop effective strategies for the bioremediation of polluted aquatic systems. In this study, the high-throughput sequencing approach was used to characterize the bacterial communities in two different mine waters of South Africa: vanadium and gold mine water. Over 2629 operational taxonomic units (OTUs) were recovered from 15,802 reads of the 16S ribosomal RNA (rRNA) gene. They represented 8 phyla, 43 orders, 84 families and 105 genera. Proteobacteria and unclassified bacterial sequences were the most dominant. Apart from these, Firmicutes, Bacteroidetes, Actinobacteria, Candidate phylum OD1, Cyanobacteria, Verrucomicrobia and Deinococcus-Thermus were the recovered phyla, although their relative abundance differed between both the mine-water samples. Yet, diversity indices suggested that the bacterial communities inhabiting the vanadium mine water were more diverse than those in gold mine water. Interestingly, substantial percentages of the reads from either sample (58 % in vanadium and 17 % in gold mine water) could not be assigned to any phylum and remained unclassified, suggesting hitherto unidentified populations, and vast untapped microbial diversity. Overall, the results of this study exhibited bacterial community structures with high diversity in mine water, which can be explored further for their role in bioremediation and environmental management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adler RA, Claassen M, Godfrey L, Turton AR (2007) Water, mining, and waste: an historical and economic perspective on conflict management in South Africa. Econ Peace Secur J 2:33–44

    Google Scholar 

  • An C, Kuda T, Yazaki T, Takahashi H, Kimura B (2014) Caecal environment of rats fed far East Asian-modelled diets. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-5535-5538

    Google Scholar 

  • APHA (2001) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association (APHA), Washington DC

    Google Scholar 

  • Aslam Z, Yasir M, Khaliq A, Matsui K, Chung YR (2010) Too much bacteria still unculturable. Crop Environ 1:59–60

    Google Scholar 

  • Berg J, Brandt KK, Al-Soud WA, Holm PE, Hansen LH, Sørensen SJ, Nybroe O (2012) Long-term Cu exposure selects for Cu-tolerant bacterial communities with altered composition, but unaltered richness. Appl Environ Microbiol 78:7438–7446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bohorquez LC, Delgado-Serrano L, López G, Osorio-Forero C, Klepac-Ceraj V, Kolter R, Junca H, Baena S, Zambrano MM (2012) In-depth characterization via complementing culture-independent approaches of the microbial community in an acidic hot spring of the Colombian Andes. Microb Ecol 63:103–115

    Article  PubMed  Google Scholar 

  • Bokulich NA, Mills DA (2013) Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities. Appl Environ Microbiol 79:2519–2526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bond PL, Smriga SP, Banfield JF (2000) Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl Environ Microbiol 66:3842–3849

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brazelton WJ, Ludwig KA, Sogin ML, Andreishcheva EN, Kelley DS, Shen C-C, Edwards RL, Baross JA (2010) Archaea and bacteria with surprising microdiversity show shifts in dominance over 1,000-year time scales in hydrothermal chimneys. Proc Natl Acad Sci U S A 107:1612–1617

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dopson M, Baker-Austin C, Koppineedi PR, Bond PL (2003) Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology 149:1959–1970

    Article  CAS  PubMed  Google Scholar 

  • Druschel GK, Baker BJ, Gihring TM, Banfield JF (2004) Acid mine drainage biogeochemistry at Iron Mountain, California. Geochem Trans 5:13–32

    Article  PubMed Central  CAS  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gansauge M-T, Meyer M (2013) Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat Protoc 8:737–748

    Article  PubMed  Google Scholar 

  • Garcia-Moyano A, Gonzalez-Toril E, Aguilera A, Amils R (2007) Prokaryotic community composition and ecology of floating macroscopic filaments from an extreme acidic environment, Rio Tinto (SW, Spain). Syst Appl Microbiol 30:601–614

    Article  CAS  PubMed  Google Scholar 

  • Goebel BM, Stackebrandt E (1994) Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl Environ Microbiol 60:1614–1621

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gołębiewski M, Deja-Sikora E, Cichosz M, Tretyn A, Wróbel B (2014) 16S rDNA pyrosequencing analysis of bacterial community in heavy metals polluted soils. Microb Ecol 67:635–647

    Article  PubMed Central  PubMed  Google Scholar 

  • Gonzalez-Toril E, Llobet-Brossa E, Casamayor EO, Amann R, Amils R (2003) Microbial ecology of an extreme acidic environment, the Tinto River. Appl Environ Microbiol 69:4853–4865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gough HL, Stahl DA (2011) Microbial community structures in anoxic freshwater lake sediment along a metal contamination gradient. ISME J 5:543–558

    Article  PubMed Central  PubMed  Google Scholar 

  • He Z, Xie X, Xiao S, Li J, Qiu G (2007) Microbial diversity of mine water at Zhong Tiaoshan copper mine, China. J Basic Microbiol 47:485–495

    Article  CAS  PubMed  Google Scholar 

  • Hennecke H, Kjelleberg S, Brussaard C (2013) Molecular insights into environmental microbes. Fems Microbiol Rev 37:285

    Article  CAS  PubMed  Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    PubMed Central  CAS  PubMed  Google Scholar 

  • Imarla T, Hector SB, Deane SM, Rawlings DE (2006) Resistance determinants of a highly arsenic-resistant strain of Leptospirillum ferriphilum isolated from a commercial biooxidation tank. Appl Environ Microbiol 72:2247–2253

    Article  Google Scholar 

  • Johnson DB, Hallberg KB (2003) The microbiology of acidic mine waters. Res Microbiol 154:466–473

    Article  CAS  PubMed  Google Scholar 

  • Kamika I, Momba MNB (2013) Microbial diversity of Emalahleni mine water in South Africa and tolerance ability of the predominant organism to vanadium and nickel. Plos One 9:e86189

    Article  Google Scholar 

  • Kuang J-L, Huang L-N, Chen L-X, Hua Z-S, Li S-J, Hu M, Li J-T, Shu W-S (2013) Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. ISME J 7:1038–1050

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuczynski J, Lauber CL, Walters WA, Parfrey LW, Clemente JC, Gevers D, Knight R (2012) Experimental and analytical tools for studying the human microbiome. Nat Rev Genet 13:47–58

    Article  CAS  Google Scholar 

  • Kyrpides NC, Hugenholtz P, Eisen JA, Woyke T, Göker M, Parker CT, Amann R, Beck BJ, Chain PS, Chun J, Colwell RR, Danchin A, Dawyndt P, Dedeurwaerdere T, DeLong EF, Detter JC, De Vos P, Donohue TJ, Dong XZ, Ehrlich DS, Fraser C, Gibbs R, Gilbert J, Gilna P, Glöckner FO, Jansson JK, Keasling JD, Knight R, Labeda D, Lapidus A, Lee JS, Li WJ, Ma J, Markowitz V, Moore ER, Morrison M, Meyer F, Nelson KE, Ohkuma M, Ouzounis CA, Pace N, Parkhill J, Qin N, Rossello-Mora R, Sikorski J, Smith D, Sogin M, Stevens R, Stingl U, Suzuki K, Taylor D, Tiedje JM, Tindall B, Wagner M, Weinstock G, Weissenbach J, White O, Wang J, Zhang L, Zhou YG, Field D, Whitman WB, Garrity GM, Klenk HP (2014) Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains. PLoS Biol 12:e1001920

    Article  PubMed Central  PubMed  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  • Liu W-T, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu H, He H, Cheng C, Liu J, Shu M, Jiao Y, Tao F, Zhong W (2014a) Diversity analysis of the bacterial community in tobacco waste extract during reconstituted tobacco process. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-5960-8

    PubMed Central  Google Scholar 

  • Liu J, Hua Z-S, Chen L-X, Kuang J-L, Li S-J, Shu W-S, Huang L-N (2014b) Correlating microbial diversity patterns with geochemistry in an extreme and heterogeneous environment of mine tailings. Appl Environ Microbiol 80:3677–3686

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Loman NJ, Constantinidou C, Christner M, Rohde H, Chan JZ, Quick J, Weir JC, Quince C, Smith GP, Betley JR, Aepfelbacher M, Pallen MJ (2013) A culture-independent sequence-based metagenomics approach to the investigation of an outbreak of shiga-toxigenic Escherichia coli O104:H4. JAMA 309:1502–1510

    Article  CAS  PubMed  Google Scholar 

  • Lu X-M, Lu P-Z (2014) Diversity, abundance, and spatial distribution of riverine microbial communities response to effluents from swine farm versus farmhouse restaurant. Appl Microbiol Biotechnol 98:7597–7608

    Article  CAS  PubMed  Google Scholar 

  • Markle JG, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U, Von Bergen M, McCoy KD, Macpherson AJ, Danska JS (2013) Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 1(339):1084–1088

    Article  Google Scholar 

  • Maynaud G, Brunel B, Mornico D, Durot M, Severac D, Dubois E, Navarro E, Cleyet-Marel J-C, Quéré AL (2013) Genome-wide transcriptional responses of two metal-tolerant symbiotic Mesorhizobium isolates to zinc and cadmium exposure. BMC Genomics 14:292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilkie A, Wilkening J, Edwards RA (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinforma 9:386–394

    Article  CAS  Google Scholar 

  • Mohapatra BR, Gould WD, Dinardo O, Koren DW (2011) Tracking the prokaryotic diversity in acid mine drainage-contaminated environments: a review of molecular methods. Miner Eng 24:709–718

    Article  CAS  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nies DH (2004) Metals and their compounds in the environment. Part II. In: Anke K, Ihnat M, Stoeppler M (eds) The elements: essential and toxic effects on microorganisms. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  • Oelofse SHH (2009) Mine water pollution—acid mine decant, effluent and treatment: a consideration of key emerging issues that may impact the state of the environment. In: Krishna CS (ed) Mining: environment and health concerns, 1st edn. The Icfai University Press, India, pp 84–91

    Google Scholar 

  • Portune KJ, Pérez MC, Álvarez-Hornos FJ, Gabaldón C (2014) Investigating bacterial populations in styrene-degrading biofilters by 16S rDNA tag pyrosequencing. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-5868-3

    PubMed Central  Google Scholar 

  • Quince C, Lanzén A, Curtis TP, Davenport RJ, Hall N, Head IM, Read LF, Sloan WT (2009) Accurate determination of microbial diversity from 454 pyrosequencing data. Nat Methods 6:639–641

    Article  CAS  PubMed  Google Scholar 

  • Raji AI, Moller C, Litthauer D, van Heerden E, Piater LA (2008) Bacterial diversity of biofilm samples from deep mines in South Africa. Biokemistri 20:53–62

    Google Scholar 

  • Ren G, Zhang H, Lin X, Zhu J, Jia Z (2014) Response of phyllosphere bacterial communities to elevated CO2 during rice growing season. Appl Microbiol Biotechnol 98:9459–9471

  • Reuter S, Ellington MJ, Cartwright EP, Köser CU, Török ME, Gouliouris T, Harris SR, Brown NM, Holden MT, Quail M, Parkhill J, Smith GP, Bentley SD, Peacock SJ (2013) Rapid bacterial whole-genome sequencing to enhance diagnostic and public health microbiology. JAMA Intern Med 173:1397–1404

    Article  PubMed Central  PubMed  Google Scholar 

  • Röske I, Sabra W, Nacke H, Daniel R, Zeng A-P, Antranikian G, Sahm K (2014) Microbial community composition and dynamics in high-temperature biogas reactors using industrial bioethanol waste as substrate. Appl Microbiol Biotechnol 98:9095–9106

    Article  PubMed  Google Scholar 

  • Shi Y, Yang H, Zhang T, Sun J, Lou K (2014) Illumina-based analysis of endophytic bacterial diversity and space-time dynamics in sugar beet on the north slope of Tianshan mountain. Appl Microbiol Biotechnol 98:6375–6385

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Crippen TL, Zheng L, Fields AT, Yu Z, Ma Q, Wood TK, Dowd SE, Flores M, Tomberlin JK, Tarone AT (2014) A metagenomic assessment of the bacteria associated with Lucilia sericata and Lucilia cuprina (Diptera: Calliphoridae). Appl Microbiol Biotechnol. doi:10.1007/s00253-014-6115-7

  • Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA, Robert KP (2009) Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol 55:1–79

    Article  PubMed  Google Scholar 

  • Staley C, Unno T, Gould TJ, Jarvis B, Phillips J, Cotner JB, Sadowsky MJ (2013) Application of Illumina next-generation sequencing to characterize the bacterial community of the Upper Mississippi River. J Appl Microbiol 115:1147–1158

    Article  CAS  PubMed  Google Scholar 

  • Stroud JL, Low A, Collins RN, Manefield M (2014) Metal(loid) bioaccessibility dictates microbial community composition in acid sulfate soil horizons and sulfidic drain sediments. Environ Sci Technol 48:8514–8521

    Article  CAS  PubMed  Google Scholar 

  • Su X, Zhang Q, Hu J, Hashmi MZ, Ding L, Shen C (2014) Enhanced degradation of biphenyl from PCB-contaminated sediments: the impact of extracellular organic matter from Micrococcus luteus. Microbiol Biotechnol. doi:10.1007/s00253-014-6108-6

    Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang L-Y, Ke W-J, Sun X-B, Liu J-F, Gu J-D, Mu B-Z (2014) Comparison of bacterial community in aqueous and oil phases of water-flooded petroleum reservoirs using pyrosequencing and clone library approaches. Appl Microbiol Biotechnol 98:4209–4221

    Article  CAS  PubMed  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu H, Zhang J, Mi Z, Xie S, Chen C, Zhang X (2014) Biofilm bacterial communities in urban drinking water distribution systems transporting waters with different purification strategies. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-6095-7

    PubMed Central  Google Scholar 

  • Ye L, Zhang T (2013) Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rDNA 454 pyrosequencing. Appl Microbiol Biotechnol 97:2681–2690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang X, Hu M, Li P (2014) Effect of hydraulic retention time (HRT) on the biodegradation of trichloroethylene wastewater and anaerobic bacterial community in the UASB reactor. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-6096-6

    Google Scholar 

  • Zhao D, Huang R, Zeng J, Yu Z, Liu P, Cheng S, Wu QL (2014) Pyrosequencing analysis of bacterial community and assembly in activated sludge samples from different geographic regions in China. Appl Microbiol Biotechnol 98:9119–9128

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the two South African mining companies for allowing the researchers to sample their evaporation dams. The financial support of National Research Foundation (NRF) and the Department of Science and Technology, South Africa for carrying out this project is thankfully acknowledged. JK gratefully acknowledges the Postdoctoral Fellowship from Tshwane University of Technology, Pretoria, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maggy N. B. Momba.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 13.8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshri, J., Mankazana, B.B.J. & Momba, M.N.B. Profile of bacterial communities in South African mine-water samples using Illumina next-generation sequencing platform. Appl Microbiol Biotechnol 99, 3233–3242 (2015). https://doi.org/10.1007/s00253-014-6213-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6213-6

Keywords

Navigation