Skip to main content

Advertisement

Log in

Activation of antitumor immune responses by Ganoderma formosanum polysaccharides in tumor-bearing mice

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Fungi of the genus Ganoderma are basidiomycetes that have been used as traditional medicine in Asia and have been shown to exhibit various pharmacological activities. We recently found that PS-F2, a polysaccharide fraction purified from the submerged culture broth of Ganoderma formosanum, stimulates the maturation of dendritic cells and primes a T helper 1 (Th1)-polarized adaptive immune response in vivo. In this study, we investigated whether the immune adjuvant function of PS-F2 can stimulate antitumor immune responses in tumor-bearing mice. Continuous intraperitoneal or oral administration of PS-F2 effectively suppressed the growth of colon 26 (C26) adenocarcinoma, B16 melanoma, and sarcoma 180 (S180) tumor cells in mice without adverse effects on the animals’ health. PS-F2 did not cause direct cytotoxicity on tumor cells, and it lost the antitumor effect in mice with severe combined immunodeficiency (SCID). CD4+ T cells, CD8+ T cells, and serum from PS-F2-treated tumor-bearing mice all exhibited antitumor activities when adoptively transferred to naïve animals, indicating that PS-F2 treatment stimulates tumor-specific cellular and humoral immune responses. These data demonstrate that continuous administration of G. formosanum polysaccharide PS-F2 can activate host immune responses against ongoing tumor growth, suggesting that PS-F2 can potentially be developed into a preventive/therapeutic agent for cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albeituni SH, Yan J (2013) The effects of beta-glucans on dendritic cells and implications for cancer therapy. Anticancer Agents Med Chem 13(5):689–698

    Article  PubMed  CAS  Google Scholar 

  • Boh B (2013) Ganoderma lucidum: a potential for biotechnological production of anti-cancer and immunomodulatory drugs. Recent Pat Anticancer Drug Discov 8(3):255–287

    Article  PubMed  CAS  Google Scholar 

  • Boh B, Berovic M, Zhang J, Zhi-Bin L (2007) Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol Annu Rev 13:265–301. doi:10.1016/S1387-2656(07)13010-6

    Article  PubMed  CAS  Google Scholar 

  • Bohle A, Brandau S (2003) Immune mechanisms in bacillus Calmette–Guerin immunotherapy for superficial bladder cancer. J Urol 170(3):964–969. doi:10.1097/01.ju.0000073852.24341.4a

    Article  PubMed  Google Scholar 

  • Boon T, Coulie PG, Van den Eynde BJ, van der Bruggen P (2006) Human T cell responses against melanoma. Annu Rev Immunol 24:175–208. doi:10.1146/annurev.immunol.24.021605.090733

    Article  PubMed  CAS  Google Scholar 

  • Cao LZ, Lin ZB (2003) Regulatory effect of Ganoderma lucidum polysaccharides on cytotoxic T-lymphocytes induced by dendritic cells in vitro. Acta Pharmacol Sin 24(4):321–326

    PubMed  Google Scholar 

  • Cao QZ, Lin ZB (2006) Ganoderma lucidum polysaccharides peptide inhibits the growth of vascular endothelial cell and the induction of VEGF in human lung cancer cell. Life Sci 78(13):1457–1463. doi:10.1016/j.lfs.2005.07.017

    Article  PubMed  CAS  Google Scholar 

  • Chan GC, Chan WK, Sze DM (2009) The effects of beta-glucan on human immune and cancer cells. J Hematol Oncol 2:25. doi:10.1186/1756-8722-2-25

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng KC, Huang HC, Chen JH, Hsu JW, Cheng HC, Ou CH, Yang WB, Chen ST, Wong CH, Juan HF (2007) Ganoderma lucidum polysaccharides in human monocytic leukemia cells: from gene expression to network construction. BMC Genomics 8:411. doi:10.1186/1471-2164-8-411

    Article  PubMed  PubMed Central  Google Scholar 

  • Chien CM, Cheng JL, Chang WT, Tien MH, Tsao CM, Chang YH, Chang HY, Hsieh JF, Wong CH, Chen ST (2004) Polysaccharides of Ganoderma lucidum alter cell immunophenotypic expression and enhance CD56+ NK-cell cytotoxicity in cord blood. Bioorg Med Chem 12(21):5603–5609. doi:10.1016/j.bmc.2004.08.004

    Article  PubMed  CAS  Google Scholar 

  • Coley WB (1891) II. Contribution to the knowledge of sarcoma. Ann Surg 14(3):199–220

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dighe AS, Richards E, Old LJ, Schreiber RD (1994) Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN gamma receptors. Immunity 1(6):447–456

    Article  PubMed  CAS  Google Scholar 

  • Dobrzanski MJ (2013) Expanding roles for CD4 T cells and their subpopulations in tumor immunity and therapy. Front Oncol 3:63. doi:10.3389/fonc.2013.00063

    Article  PubMed  PubMed Central  Google Scholar 

  • Dougan M, Dranoff G (2009) Immune therapy for cancer. Annu Rev Immunol 27:83–117. doi:10.1146/annurev.immunol.021908.132544

    Article  PubMed  CAS  Google Scholar 

  • Engel AM, Svane IM, Mouritsen S, Rygaard J, Clausen J, Werdelin O (1996) Methylcholanthrene-induced sarcomas in nude mice have short induction times and relatively low levels of surface MHC class I expression. APMIS 104(9):629–639

    Article  PubMed  CAS  Google Scholar 

  • Engel AM, Svane IM, Rygaard J, Werdelin O (1997) MCA sarcomas induced in scid mice are more immunogenic than MCA sarcomas induced in congenic, immunocompetent mice. Scand J Immunol 45(5):463–470

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Zhou S, Jiang W, Huang M, Dai X (2003) Effects of ganopoly (a Ganoderma lucidum polysaccharide extract) on the immune functions in advanced-stage cancer patients. Immunol Invest 32(3):201–215

    Article  PubMed  Google Scholar 

  • Gao Y, Gao H, Chan E, Tang W, Xu A, Yang H, Huang M, Lan J, Li X, Duan W, Xu C, Zhou S (2005) Antitumor activity and underlying mechanisms of ganopoly, the refined polysaccharides extracted from Ganoderma lucidum, in mice. Immunol Invest 34(2):171–198

    Article  PubMed  CAS  Google Scholar 

  • Goutagny N, Estornes Y, Hasan U, Lebecque S, Caux C (2012) Targeting pattern recognition receptors in cancer immunotherapy. Target Oncol 7(1):29–54. doi:10.1007/s11523-012-0213-1

    Article  PubMed  Google Scholar 

  • Herr HW, Schwalb DM, Zhang ZF, Sogani PC, Fair WR, Whitmore WF Jr, Oettgen HF (1995) Intravesical bacillus Calmette–Guerin therapy prevents tumor progression and death from superficial bladder cancer: ten-year follow-up of a prospective randomized trial. J Clin Oncol 13(6):1404–1408

    PubMed  CAS  Google Scholar 

  • Hsiao WL, Li YQ, Lee TL, Li N, You MM, Chang ST (2004) Medicinal mushroom extracts inhibit ras-induced cell transformation and the inhibitory effect requires the presence of normal cells. Carcinogenesis 25(7):1177–1183. doi:10.1093/carcin/bgh119

    Article  PubMed  CAS  Google Scholar 

  • Ikeda H, Chamoto K, Tsuji T, Suzuki Y, Wakita D, Takeshima T, Nishimura T (2004) The critical role of type-1 innate and acquired immunity in tumor immunotherapy. Cancer Sci 95(9):697–703

    Article  PubMed  CAS  Google Scholar 

  • Kaczanowska S, Joseph AM, Davila E (2013) TLR agonists: our best frenemy in cancer immunotherapy. J Leukoc Biol 93(6):847–863. doi:10.1189/jlb.1012501

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ, Schreiber RD (1998) Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci U S A 95(13):7556–7561

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kumar H, Kawai T, Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30(1):16–34. doi:10.3109/08830185.2010.529976

    Article  PubMed  CAS  Google Scholar 

  • Li YB, Wang R, Wu HL, Li YH, Zhong LJ, Yu HM, Li XJ (2008) Serum amyloid A mediates the inhibitory effect of Ganoderma lucidum polysaccharides on tumor cell adhesion to endothelial cells. Oncol Rep 20(3):549–556

    PubMed  Google Scholar 

  • Li B, Cai Y, Qi C, Hansen R, Ding C, Mitchell TC, Yan J (2010) Orally administered particulate beta-glucan modulates tumor-capturing dendritic cells and improves antitumor T-cell responses in cancer. Clin Cancer Res 16(21):5153–5164. doi:10.1158/1078-0432.CCR-10-0820

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li QZ, Wang XF, Zhou XW (2011) Recent status and prospects of the fungal immunomodulatory protein family. Crit Rev Biotechnol 31(4):365–375. doi:10.3109/07388551.2010.543967

    Article  PubMed  Google Scholar 

  • Lin ZB, Zhang HN (2004) Anti-tumor and immunoregulatory activities of Ganoderma lucidum and its possible mechanisms. Acta Pharmacol Sin 25(11):1387–1395

    PubMed  CAS  Google Scholar 

  • Martin SE, Martin WJ (1975) Anti-tumour antibodies in normal mouse sera. Int J Cancer 15(4):658–664

    Article  PubMed  CAS  Google Scholar 

  • Paterson RR (2006) Ganoderma—a therapeutic fungal biofactory. Phytochemistry 67(18):1985–2001. doi:10.1016/j.phytochem.2006.07.004

    Article  PubMed  CAS  Google Scholar 

  • Pi CC, Chu CL, Lu CY, Zhuang YJ, Wang CL, Yu YH, Wang HY, Lin CC, Chen CJ (2014) Polysaccharides from Ganoderma formosanum function as a Th1 adjuvant and stimulate cytotoxic T cell response in vivo. Vaccine 32(3):401–408. doi:10.1016/j.vaccine.2013.11.027

    Article  PubMed  CAS  Google Scholar 

  • Scott AM, Wolchok JD, Old LJ (2012) Antibody therapy of cancer. Nat Rev Cancer 12(4):278–287. doi:10.1038/nrc3236

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Kikuchi T, Takatsuki F, Hamuro J (1994) Curative effects of combination therapy with lentinan and interleukin-2 against established murine tumors, and the role of CD8-positive T cells. Cancer Immunol Immunother 38(1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Tsung K, Norton JA (2006) Lessons from Coley’s toxin. Surg Oncol 15(1):25–28. doi:10.1016/j.suronc.2006.05.002

    Article  PubMed  Google Scholar 

  • Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271. doi:10.1146/annurev-immunol-031210-101324

    Article  PubMed  CAS  Google Scholar 

  • Wang SY, Hsu ML, Hsu HC, Tzeng CH, Lee SS, Shiao MS, Ho CK (1997) The anti-tumor effect of Ganoderma lucidum is mediated by cytokines released from activated macrophages and T lymphocytes. Int J Cancer 70(6):699–705

    Article  PubMed  CAS  Google Scholar 

  • Wang YY, Khoo KH, Chen ST, Lin CC, Wong CH, Lin CH (2002) Studies on the immuno-modulating and antitumor activities of Ganoderma lucidum (Reishi) polysaccharides: functional and proteomic analyses of a fucose-containing glycoprotein fraction responsible for the activities. Bioorg Med Chem 10(4):1057–1062

    Article  PubMed  CAS  Google Scholar 

  • Wang CL, Pi CC, Kuo CW, Zhuang YJ, Khoo KH, Liu WH, Chen CJ (2011) Polysaccharides purified from the submerged culture of Ganoderma formosanum stimulate macrophage activation and protect mice against Listeria monocytogenes infection. Biotechnol Lett 33(11):2271–2278. doi:10.1007/s10529-011-0697-2

    Article  PubMed  CAS  Google Scholar 

  • Wang CL, Lu CY, Pi CC, Zhuang YJ, Chu CL, Liu WH, Chen CJ (2012a) Extracellular polysaccharides produced by Ganoderma formosanum stimulate macrophage activation via multiple pattern-recognition receptors. BMC Complement Altern Med 12(1):119. doi:10.1186/1472-6882-12-119

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang PY, Zhu XL, Lin ZB (2012b) Antitumor and immunomodulatory effects of polysaccharides from broken-spore of Ganoderma lucidum. Front Pharmacol 3:135. doi:10.3389/fphar.2012.00135

    PubMed  PubMed Central  Google Scholar 

  • Wasser SP (2002) Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 60(3):258–274. doi:10.1007/s00253-002-1076-7

    Article  PubMed  CAS  Google Scholar 

  • Wasser SP (2011) Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Appl Microbiol Biotechnol 89(5):1323–1332. doi:10.1007/s00253-010-3067-4

    Article  PubMed  CAS  Google Scholar 

  • Weng CJ, Yen GC (2010) The in vitro and in vivo experimental evidences disclose the chemopreventive effects of Ganoderma lucidum on cancer invasion and metastasis. Clin Exp Metastasis 27(5):361–369. doi:10.1007/s10585-010-9334-z

    Article  PubMed  Google Scholar 

  • Wu R, Forget MA, Chacon J, Bernatchez C, Haymaker C, Chen JQ, Hwu P, Radvanyi LG (2012) Adoptive T-cell therapy using autologous tumor-infiltrating lymphocytes for metastatic melanoma: current status and future outlook. Cancer J 18(2):160–175. doi:10.1097/PPO.0b013e31824d4465

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wu GS, Guo JJ, Bao JL, Li XW, Chen XP, Lu JJ, Wang YT (2013) Anti-cancer properties of triterpenoids isolated from Ganoderma lucidum—a review. Expert Opin Investig Drugs 22(8):981–992. doi:10.1517/13543784.2013.805202

    Article  PubMed  CAS  Google Scholar 

  • Xia Y, Vetvicka V, Yan J, Hanikyrova M, Mayadas T, Ross GD (1999) The beta-glucan-binding lectin site of mouse CR3 (CD11b/CD18) and its function in generating a primed state of the receptor that mediates cytotoxic activation in response to iC3b-opsonized target cells. J Immunol 162(4):2281–2290

    PubMed  CAS  Google Scholar 

  • Xu Z, Chen X, Zhong Z, Chen L, Wang Y (2011) Ganoderma lucidum polysaccharides: immunomodulation and potential anti-tumor activities. Am J Chin Med 39(1):15–27

    Article  PubMed  Google Scholar 

  • Yan J, Vetvicka V, Xia Y, Coxon A, Carroll MC, Mayadas TN, Ross GD (1999) Beta-glucan, a “specific” biologic response modifier that uses antibodies to target tumors for cytotoxic recognition by leukocyte complement receptor type 3 (CD11b/CD18). J Immunol 163(6):3045–3052

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Science Council (NSC99-2628-B-002-005-MY3) and the Council of Agriculture (98AS-3.1.3-FD-Z1), Taiwan. This work was also supported in part by the National Health Research Institutes (NHRI-EX97-9724SC) and National Taiwan University (NTU-CDP-103R7824), Taiwan.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Jen Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 167 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, CL., Lu, CY., Hsueh, YC. et al. Activation of antitumor immune responses by Ganoderma formosanum polysaccharides in tumor-bearing mice. Appl Microbiol Biotechnol 98, 9389–9398 (2014). https://doi.org/10.1007/s00253-014-6027-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6027-6

Keywords

Navigation