Skip to main content
Log in

Double substituted variant of Bacillus amyloliquefaciens esterase with enhanced enantioselectivity and high activity towards 1-(3′,4′-methylenedioxyphenyl)ethyl acetate

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bacillus amyloliquefaciens esterase (BAE) was applied to produce (R)-1-(3′,4′-methylenedioxyphenyl)ethanol, a chiral drug intermediate. In this study, we improved the enantioselectivity of BAE by protein engineering instead of process engineering as used in our previous work. Saturation mutagenesis was carried out on eight positions of BAE based on structure modeling and substrate docking. A double substituted variant V10 (K358D/A396C) showed an excellent enantioselectivity without decreasing the activity. The functions of these two mutations (K358D and A396C) were investigated, revealing a synergic effect on the BAE enantioselectivity. Using the variant V10, enantiopure (R)-1-(3′,4′-methylenedioxyphenyl)ethanol could be readily prepared in >97 % ee, affording a high space-time yield (123 g L−1 day−1) and a high ratio of substrate/catalyst (40 g g−1) in 1-L reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barbayianni E, Kokotos CG, Bartsch S, Drakou C, Bornscheuer UT, Kokotos G (2009) Bacillus subtilis esterase (BS2) and its double mutant have different selectivity in the removal of carboxyl protecting groups. Adv Synth Catal 351(14–15):2325–2332

    Article  CAS  Google Scholar 

  • Bassegoda A, Nguyen GS, Schmidt M, Kourist R, Diaz P, Bornscheuer UT (2010) Rational protein design of Paenibacillus barcinonensis esterase EstA for kinetic resolution of tertiary alcohols. ChemCatChem 2(8):962–967

    Article  CAS  Google Scholar 

  • Bordes F, Cambon E, Dossat-Letisse V, Andre I, Croux C, Nicaud JM, Marty A (2009) Improvement of Yarrowia lipolytica lipase enantioselectivity by using mutagenesis targeted to the substrate binding site. ChemBioChem 10(10):1705–1713

    Article  CAS  PubMed  Google Scholar 

  • Carballeira JD, Krumlinde P, Bocola M, Vogel A, Reetz MT, Backvall JE (2007) Directed evolution and axial chirality: optimization of the enantioselectivity of Pseudomonas aeruginosa lipase towards the kinetic resolution of a racemic allene. Chem Commun 19:1913–1915

    Article  Google Scholar 

  • Ema T, Fujii T, Ozaki M, Korenaga T, Sakai T (2005) Rational control of enantioselectivity of lipase by site-directed mutagenesis based on the mechanism. Chem Commun 37:4650–4651

    Article  Google Scholar 

  • Ema T, Kamata S, Takeda M, Nakano Y, Sakai T (2010) Rational creation of mutant enzyme showing remarkable enhancement of catalytic activity and enantioselectivity toward poor substrates. Chem Commun 46(30):5440–5442

    Article  CAS  Google Scholar 

  • Guieysse D, Salagnad C, Monsan P, Remaud-Simeon M, Tran V (2003) Towards a novel explanation of Pseudomonas cepacia lipase enantioselectivity via molecular modelling of the enantiomer trajectory into the active site. Tetrahedron Asymmetry 14(13):1807–1817

    Article  CAS  Google Scholar 

  • Hashiguchi S, Fujii A, Haack KJ, Matsumura K, Ikariya T, Noyori R (1997) Kinetic resolution of racemic secondary alcohols by RuII-catalyzed hydrogen transfer. Angew Chem Int Ed 36(3):288–290

    Article  CAS  Google Scholar 

  • Heinze B, Kourist R, Fransson L, Hult K, Bornscheuer UT (2007) Highly enantioselective kinetic resolution of two tertiary alcohols using mutants of an esterase from Bacillus subtilis. Protein Eng Des Sel 20(3):125–131

    Article  CAS  PubMed  Google Scholar 

  • Henke E, Bornscheuer UT, Schmid RD, Pleiss J (2003) A molecular mechanism of enantiorecognition of tertiary alcohols by carboxylesterases. ChemBioChem 4(6):485–493

    Article  CAS  PubMed  Google Scholar 

  • Janes LE, Lowendahl AC, Kazlauskas RJ (1998) Quantitative screening of hydrolase libraries using pH indicators: identifying active and enantioselective hydrolases. Chem Eur J 4(11):2324–2331

    Article  CAS  Google Scholar 

  • Kotik M, Archelas A, Famerova V, Oubrechtova P, Kren V (2011) Laboratory evolution of an epoxide hydrolase—towards an enantioconvergent biocatalyst. J Biotechnol 156(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Koul S, Koul JL, Singh B, Kapoor M, Parshad R, Manhas KS, Taneja SC, Qazi GN (2005) Trichosporon beigelli esterase (TBE): a versatile esterase for the resolution of economically important racemates. Tetrahedron Asymmetry 16(15):2575–2591

    Article  CAS  Google Scholar 

  • Kourist R, Bartsch S, Bornscheuer UT (2007) Highly enantioselective synthesis of arylaliphatic tertiary alcohols using mutants of an esterase from Bacillus subtilis. Adv Synth Catal 349(8–9):1393–1398

    Article  CAS  Google Scholar 

  • Liu J, Tang XL, Yu HW (2010) Prediction of the enantioselectivity of lipases and esterases by molecular docking method with modified force field parameters. Biotechnol Bioeng 105(4):687–696

    CAS  Google Scholar 

  • Liu JY, Zheng GW, Li CX, Yu HL, Pan J, Xu JH (2013) Multi-substrate fingerprinting of esterolytic enzymes with a group of acetylated alcohols and statistic analysis of substrate spectrum. J Mol Catal B Enzym 89:41–47

    Article  CAS  Google Scholar 

  • Liu JY, Zheng GW, Imanaka T, Xu JH (2014) Stepwise and combinatorial optimization of enantioselectivity for asymmetric hydrolysis of 1-(3′,4′-methylenedioxyphenyl)ethyl acetate using a cold-adapted Bacillus amyloliquefaciens esterase. Biotechnol Bioprocess Eng 19(3):442–448

  • Ma JB, Wu L, Guo F, Gu JL, Tang XL, Jiang L, Liu J, Zhou JH, Yu HW (2013) Enhanced enantioselectivity of a carboxyl esterase from Rhodobacter sphaeroides by directed evolution. Appl Microbiol Biotechnol 97(11):4897–4906

    Article  CAS  PubMed  Google Scholar 

  • Ni Z, Lin XF (2013) Insight into substituent effects in Cal-B catalyzed transesterification by combining experimental and theoretical approaches. J Mol Model 19(1):349–358

  • Ollis D, White S (1990) Protein crystallization. Methods Enzymol 182:646–659

    Article  CAS  PubMed  Google Scholar 

  • Park S, Morley KL, Horsman GP, Holmquist M, Hult K, Kazlauskas RJ (2005) Focusing mutations into the P. fluorescens esterase binding site increases enantioselectivity more effectively than distant mutations. Chem Biol 12(1):45–54

    Article  CAS  PubMed  Google Scholar 

  • Qin B, Liang P, Jia X, Zhang X, Mu M, Wang XY, Ma GZ, Jin DN, You S (2013) Directed evolution of Candida antarctica lipase B for kinetic resolution of profen esters. Catal Commun 38:1–5

    Article  CAS  Google Scholar 

  • Reetz MT, Carballeira JD (2007) Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat Protoc 2(4):891–903

    Article  CAS  PubMed  Google Scholar 

  • Reetz MT, Zonta A, Schimossek K, Liebeton K, Jaeger KE (1997) Creation of enantioselective biocatalysts for organic chemistry by in vitro evolution. Angew Chem Int Ed 36(24):2830–2832

    Article  CAS  Google Scholar 

  • Reetz MT, Wang LW, Bocola M (2006) Directed evolution of enantioselective enzymes: iterative cycles of CASTing for probing protein-sequence space. Angew Chem Int Ed 45(8):1236–1241

    Article  CAS  Google Scholar 

  • Schliessmann A, Hidalgo A, Berenguer J, Bornscheuer UT (2009) Increased enantioselectivity by engineering bottleneck mutants in an esterase from Pseudomonas fluorescens. ChemBioChem 10(18):2920–2923

    Article  PubMed  Google Scholar 

  • Schulz T, Pleiss J, Schmid RD (2000) Stereoselectivity of Pseudomonas cepacia lipase toward secondary alcohols: a quantitative model. Protein Sci 9(6):1053–1062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spiller B, Gershenson A, Arnold FH, Stevens RC (1999) A structural view of evolutionary divergence. Proc Natl Acad Sci U S A 96(22):12305–12310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang MC, Zhang QJ, Zhao WX, Wang XD, Ding X, Jing TT, Song MP (2008) Evaluation of enantiopure N-(ferrocenylmethyl) azetidin-2-yl (diphenyl) methanol for catalytic asymmetric addition of organozinc reagents to aldehydes. J Org Chem 73(1):168–176

    Article  CAS  PubMed  Google Scholar 

  • Wang MC, Zhang QJ, Li GW, Liu ZK (2009) Highly enantioselective addition of dimethylzinc to arylaldehydes catalyzed by (2S)-1-ferrocenyl-methylaziridin-2-yl (diphenyl) methanol. Tetrahedron Asymmetry 20(3):288–292

    Article  CAS  Google Scholar 

  • Wettergren J, Bøgevig A, Portier M, Adolfsson H (2006) Ruthenium-catalyzed enantioselective reduction of electron-rich aryl alkyl ketones. Adv Synth Catal 348(10–11):1277–1282

    Article  CAS  Google Scholar 

  • Wiggers M, Holt J, Kourist R, Bartsch S, Arends I, Minnaard AJ, Bornscheuer UT, Hanefeld U (2009) Probing the enantioselectivity of Bacillus subtilis esterase BS2 for tert. alcohols. J Mol Catal B Enzym 60(1–2):82–86

    Article  CAS  Google Scholar 

  • Zhang B, Wang H, Lin GQ, Xu MH (2011) Ruthenium(II)-catalyzed asymmetric transfer hydrogenation using unsymmetrical vicinal diamine-based ligands: dramatic substituent effect on catalyst efficiency. Eur J Org Chem 22:4205–4211

  • Zhao LL, Xu JH, Zhao J, Pan J, Wang ZL (2008) Biochemical properties and potential applications of an organic solvent-tolerant lipase isolated from Serratia marcescens ECU1010. Process Biochem 43(6):626–633

    Article  CAS  Google Scholar 

  • Zheng GW, Pan J, Yu HL, Ngo-Thi MT, Li CX, Xu JH (2010) An efficient bioprocess for enzymatic production of L-menthol with high ratio of substrate to catalyst using whole cells of recombinant E. coli. J Biotechnol 150(1):108–114

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (Nos. 31200050 & 21276082), Ministry of Science and Technology, People’s Republic of China (Nos. 2011AA02A210 & 2011CB710800), and the Fundamental Research Funds for the Central Universities, Ministry of Education, People’s Republic China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-He Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 88.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JY., Bian, HP., Tang, Y. et al. Double substituted variant of Bacillus amyloliquefaciens esterase with enhanced enantioselectivity and high activity towards 1-(3′,4′-methylenedioxyphenyl)ethyl acetate. Appl Microbiol Biotechnol 99, 1701–1708 (2015). https://doi.org/10.1007/s00253-014-5992-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5992-0

Keywords

Navigation