Skip to main content
Log in

High-level expression in Corynebacterium glutamicum of nitrile hydratase from Rhodococcus rhodochrous for acrylamide production

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The nhhBAG gene of Rhodococcus rhodochrous M33 that encodes nitrile hydratase (NHase), converting acrylonitrile into acrylamide, was cloned and expressed in Corynebacterium glutamicum under the control of an ilvC promoter. The specific enzyme activity in recombinant C. glutamicum cells was about 13.6 μmol/min/mg dry cell weight (DCW). To overexpress the NHase, five types of plasmid variants were constructed by introducing mutations into 80 nucleotides near the translational initiation region (TIR) of nhhB. Of them, pNBM4 with seven mutations showed the highest NHase activity, exhibiting higher expression levels of NhhB and NhhA than wild-type pNBW33, mainly owing to decreased secondary-structure stability and an introduction of a conserved Shine-Dalgarno sequence in the translational initiation region. In a fed-batch culture of recombinant Corynebacterium cells harboring pNBM4, the cell density reached 53.4 g DCW/L within 18 h, and the specific and total enzyme activities were estimated to be 37.3 μmol/min/mg DCW and 1,992 μmol/min/mL, respectively. The use of recombinant Corynebacterium cells for the production of acrylamide from acrylonitrile resulted in a conversion yield of 93 % and a final acrylamide concentration of 42.5 % within 6 h when the total amount of fed acrylonitrile was 456 g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brennan BA, Alms G, Nelson MJ, Durney LT, Scarrow RC (1996) Nitrile hydratase from Rhodococcus rhodochrous J1 contains a non-corrin cobalt ion with two sulfur ligands. J Am Chem Soc 118:9194–9195

    Article  CAS  Google Scholar 

  • Date M, Itaya H, Matsui H, Kikuchi Y (2006) Secretion of human epidermal growth factor by Corynebacterium glutamicum. Lett Appl Microbiol 42:66–70

    Article  PubMed  CAS  Google Scholar 

  • de Smit MH, van Duin J (1994) Control of translation by mRNA secondary structure in Escherichia coli. A quantitative analysis of literature data. J Mol Biol 244:144–150

    Article  PubMed  Google Scholar 

  • Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104:155–172

    Article  PubMed  CAS  Google Scholar 

  • Jana S, Deb JK (2005) Strategies for efficient production of heterologous proteins in Escherichia coli. Appl Microbiol Biotechnol 67:289–298

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Oriel P (2000) Cloning and expression of the nitrile hydratase and amidase genes from Bacillus sp. BR449 into Escherichia coli. Enzyme Microb Technol 27:492–501

    Article  PubMed  CAS  Google Scholar 

  • Kim BY, Kim JC, Lee HH, Hyun HH (2001) Fed-batch fermentation for production of nitrile hydratase by Rhodococcus rhodochrous M33. Biotechnol Bioproc Eng 6:11–17

    Article  CAS  Google Scholar 

  • Kobayashi M, Shimizu S (1998) Metalloenzyme nitrile hydratase: structure, regulation, and application to biotechnology. Nat Biotechnol 16:733–736

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Nishiyama M, Nagasawa T, Horinouchi S, Beppu T, Yamada H (1991) Cloning, nucleotide sequence, and expression in Escherichia coli of two cobalt-containing nitrile hydratase genes from Rhodococcus rhodochrous J1. Biochim Biophys Acta 1129:23–33

    Article  PubMed  CAS  Google Scholar 

  • Komeda H, Kobayashi M, Shimizu S (1996) Characterization of the gene cluster of high-molecular-mass nitrile hydratase (H-NHase) induced by its reaction product in Rhodococcus rhodochrous Jl. Proc Natl Acad Sci U S A 93:4267–4272

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Komeda H, Kobayashi M, Shimizu S (1997) A novel transporter involved in cobalt uptake. Proc Natl Acad Sci U S A 94:36–41

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kudla G, Murray AW, Tollervey D, Plotkin JB (2009) Coding-sequence determinants of gene expression in Escherichia coli. Science 324:255–258

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liebeton K, Eck J (2004) Identification and expression in E. coli of novel nitrile hydratases from the metagenome. Eng Life Sci 4:557–562

    Article  CAS  Google Scholar 

  • Martín JF, Barreiro C, González-Lavado E, Barriuso M (2003) Ribosomal RNA and ribosomal proteins in Corynebacteria. J Biotechnol 104:41–53

    Article  PubMed  CAS  Google Scholar 

  • Myagchenkov VA, Kurenkov VF (1991) Applications of acrylamide polymers and copolymers—a review. Polym Plast Technol 30(2–3):109–135

    Article  CAS  Google Scholar 

  • Nagasawa T, Takeuchi K, Nardi-Dei V, Mihara Y, Yamada H (1991) Optimum culture conditions for the production of cobalt-containing nitrile hydratase by Rhodococcus rhodochrous J1. Appl Microbiol Biotechnol 34:783–788

    Article  CAS  Google Scholar 

  • Nagasawa T, Shimizu H, Yamada H (1993) The superiority of the third-generation catalyst, Rhodococcus rhodochrous J1 nitrile hydratase, for industrial production of acrylamide. Appl Microbiol Biotechnol 40:189–195

    Article  CAS  Google Scholar 

  • Nesvera J, Patek M (2011) Tools for genetic manipulations in Corynebacterium glutamicum and their applications. Appl Microbiol Biotechnol 90(5):1641–1654

    Article  PubMed  CAS  Google Scholar 

  • Neupert J, Karcher D, Bock R (2008) Design of simple synthetic RNA thermometers for temperature-controlled gene expression in Escherichia coli. Nucleic Acids Res 36:e124

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nojiri M, Yohda M, Odaka M, Matsushita Y, Tsujimura M, Yoshida T, Dohmae N, Takio K, Endo I (1999) Functional expression of nitrile hydratase in Escherichia coli: requirement of a nitrile hydratase activator and post-translational modification of a ligand cysteine. J Biochem 125:696–704

    Article  PubMed  CAS  Google Scholar 

  • Ogawa J, Shimizu S (2002) Industrial microbial enzymes: their discovery by screening and use in large-scale production of useful chemicals in Japan. Curr Opin Biotechnol 13(4):367–375

    Article  PubMed  CAS  Google Scholar 

  • Park YS, Seo SW, Hwang S, Chu HS, Ahn JH, Kim TW, Kim DM, Jung GY (2007) Design of 5'-untranslated region variants for tunable expression in Escherichia coli. Biochem Biophys Res Commun 356:136–141

    Article  PubMed  CAS  Google Scholar 

  • Park JU, Jo JH, Kim YJ, Chung SS, Lee JH, Lee HH (2008) Construction of heat-inducible expression vector of Corynebacterium glutamicum and C. ammoniagenes: fusion of lambda operator with promoters isolated from C. ammoniagenes. J Microbiol Biotechnol 18:639–647

    PubMed  Google Scholar 

  • Patek M, Eikmanns BJ, Patek J, Sahm H (1996) Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif. Microbiology 142:1297–1309

    Article  PubMed  CAS  Google Scholar 

  • Prasad S, Bhalla TC (2010) Nitrile hydratases (NHase): at the interface of academia and industry. Biotechnol Adv 28:725–741

    Article  PubMed  CAS  Google Scholar 

  • Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 27:946–950

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schneider J, Eberhardt D, Wendisch VF (2012) Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system. Appl Microbiol Biotechnol 95(1):169–178

    Article  PubMed  CAS  Google Scholar 

  • Seo SW, Yang J, Jung GY (2009) Quantitative correlation between mRNA secondary structure around the region downstream of the initiation codon and translational efficiency in Escherichia coli. Biotechnol Bioeng 104:611–616

    Article  PubMed  CAS  Google Scholar 

  • Srivastava P, Deb JK (2005) Gene expression systems in corynebacteria. Protein Expr Purif 40(2):221–229

    Article  PubMed  CAS  Google Scholar 

  • Toru J, Masayuki I, Hideaki Y (2012) Biorefinery applications of Corynebacterium glutamicum. In: Tatsumi N, Inui M (eds) Corynebacterium glutamicum: biology and biotechnology. Springer, London, pp 149–172

    Google Scholar 

  • Tsao D, Shabalina SA, Gauthier J, Dokholyan NV, Diatchenko L (2011) Disruptive mRNA folding increases translational efficiency of catechol-O-methyltransferase variant. Nucleic Acids Res 39:6201–6212

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52:541–545

    Article  PubMed  Google Scholar 

  • Wieschalka S, Blombach B, Bott M, Eikmanns BJ (2013) Bio-based production of organic acids with Corynebacterium glutamicum. Microb Biotechnol 6(2):87–102

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yamada H, Kobayashi M (1996) Nitrile hydratase and its application to industrial production of acrylamide. Biosci Biotechnol Biochem 60:1391–1400

    Article  PubMed  CAS  Google Scholar 

  • Yanenko et al. (1998) Strain of R. rhodochrous as a producer of nitrile hydratase. US Patent 5827699

  • Zuker M (2003) Mfold Web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Tongsuh Petrochemical Corp., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hak-Sung Kim or Jin-Ho Lee.

Additional information

Mi-Suk Kang and Sang-Soo Han equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, MS., Han, SS., Kim, MY. et al. High-level expression in Corynebacterium glutamicum of nitrile hydratase from Rhodococcus rhodochrous for acrylamide production. Appl Microbiol Biotechnol 98, 4379–4387 (2014). https://doi.org/10.1007/s00253-014-5544-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5544-7

Keywords

Navigation