Skip to main content
Log in

Ammonium acrylate biomanufacturing by an engineered Rhodococcus ruber with nitrilase overexpression and double-knockout of nitrile hydratase and amidase

  • Biocatalysis - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Rhodococcus ruber TH was selected as a parent strain to engineer for biomanufacturing of ammonium acrylate; the characteristics of this strain included accelerated growth rate, high cell tolerance and natively overexpressed nitrile hydratase (NHase). Transcriptome analysis revealed that the transcription levels of the native NHase, amidase and nitrilase were extremely high, moderate and extremely low, respectively. Through NHase-amidase double-knockout and amidase single-knockout, the engineered strains R. ruber THdAdN and R. ruber THdA were obtained for overexpression of a heterologous nitrilase from R. rhodochrous tg1-A6 using a urea-induced Pa2 promoter. The nitrilase activity toward substrate acrylonitrile in the engineered THdAdN(Nit) reached 187.0 U/mL at 42 h, threefold of that R. rhodochrous tg1-A6 and 2.3-fold of that of THdA(Nit). The optimal catalysis temperature and pH of the nitrilases in different cells exhibited no significant difference. Using the cells as catalysts, biomanufacturing of ammonium acrylate was performed under room temperature. When catalyzed by the engineered THdAdN(Nit), the titer and productivity of ammonium acrylate dramatically increased to 741.0 g/L and 344.9 g/L/h, which are the highest results reported to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agarwal A, Nigam VK (2014) Nitrilase mediated conversion of Indole-3-acetonitrile to Indole-3-acetic acid. Biocatal Agric Biotechnol 3:351–357

    Google Scholar 

  2. Asano Y, Yasuda T, Tani Y, Yamada H (1982) A new enzymatic method of acrylamide production. Agric Biol Chem 46:1183–1189

    CAS  Google Scholar 

  3. Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485:185–194

    Article  CAS  PubMed  Google Scholar 

  4. Chen H, Chen Z, Ni Z, Tian R, Zhang T, Jia J, Chen K, Yang S (2015) Display of Thermotoga maritima MSB8 nitrilase on the spore surface of Bacillus subtilis using out coat protein CotG as the fusion partner. J Mol Catal B Enzym 123:73–80

    Article  CAS  Google Scholar 

  5. Chiba K, Hoshino Y, Ishino K, Kogure T, Mikami Y, Uehara Y, Ishikawa J (2007) Construction of a pair of Practical Nocardia-Escherichia coli shuttle vectors. Jpn J Infect Dis 60:45–47

    CAS  PubMed  Google Scholar 

  6. Chu HS, Ahn JH, Yun J, Choi IS, Nam TW, Cho KM (2015) Direct fermentation route for the production of acrylic acid. Metab Eng 32:23–29

    Article  CAS  PubMed  Google Scholar 

  7. Cobb RE, Wang Y, Zhao H (2015) High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. Acs Synth Biol 4:723–728

    Article  CAS  PubMed  Google Scholar 

  8. Dicarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41:4336–4343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gong JS, Lu ZM, Li H, Shi JS, Zhou ZM, Xu ZH (2012) Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb Cell Fact 11:1–18

    Article  CAS  Google Scholar 

  10. Jiang G, Chen J, Thu HY, Huang JS, Zhu N, Che CM (2009) Microbial transformation of nitriles to high-value acids or amides. Adv Biochem Eng Biotechnol 113:33–77

    Google Scholar 

  11. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kamal A, Kumar MS, Kumar CG, Shaik T (2011) Bioconversion of acrylonitrile to acrylic acid by Rhodococcus ruber strain AKSH-84. J Microbiol Biotechnol 21:37–42

    Article  CAS  PubMed  Google Scholar 

  13. Kim S-H, Oriel P (2000) Cloning and expression of the nitrile hydratase and amidase genes from Bacillus sp. BR449 into Escherichia coli. Enzyme Microb Technol 27:492–501

    Article  CAS  PubMed  Google Scholar 

  14. Komeda H, Kobayashi M, Shimizu S (1996) Characterization of the gene cluster of high-molecular-mass nitrile hydratase (H-NHase) induced by its reaction product in Rhodococcus rhodochrous J1. Proc Natl Acad Sci 93:4267–4272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Leonova TE, Astaurova OB, Ryabchenko LE, Yanenko AS (2000) Nitrile hydratase of Rhodococcus. Appl Biochem Biotechnol 88:231–241

    Article  CAS  Google Scholar 

  16. Liu C, Yu H, Ma Y, Pan W, Luo H (2009) Promoter recognition and β-galactosidase reporter gene expression in Rhodococcus. Chin J Biotechnol 25:1360–1365

    CAS  Google Scholar 

  17. Luo H, Ma J, Chang Y, Yu H, Shen Z (2015) Directed evolution and mutant characterization of nitrilase from Rhodococcus rhodochrous tg1-A6. Appl Biochem Biotechnol 178(8):1510–1521

    Article  CAS  PubMed  Google Scholar 

  18. Luo H, Lu F, Chang Y, Ma J, Yu H, Shen Z (2008) Gene cloning, overexpression, and characterization of the nitrilase from Rhodococcus rhodochrous tg1-A6 in E. coli. Appl Biochem Biotechnol 160:393–400

    Article  CAS  PubMed  Google Scholar 

  19. Luo H, Wang TG, Hui-Min YU, Yang HF, Shen ZY (2006) Expression and catalyzing process of the nirilase in Rhodococcus rhodochrous tg1-A6. Modern Chem Ind 26:109–113

    Google Scholar 

  20. Ma Y, Yu H (2012) Engineering of Rhodococcus cell catalysts for tolerance improvement by sigma factor mutation and active plasmid partition. J Ind Microbiol Biotechnol 39:1421–1430

    Article  CAS  PubMed  Google Scholar 

  21. Ma Y, Yu H, Pan W, Liu C, Zhang S, Shen Z (2010) Identification of nitrile hydratase-producing Rhodococcus ruber TH and characterization of an amiE-negative mutant. Bioresour Technol 101:285–291

    Article  CAS  PubMed  Google Scholar 

  22. Martínková L, Křen V (2010) Biotransformations with nitrilases. Curr Opin Chem Biol 14:130–137

    Article  CAS  PubMed  Google Scholar 

  23. Martínková L, Uhnáková B, Pátek M, Nešvera J, Křen V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35:162–177

    Article  CAS  PubMed  Google Scholar 

  24. Nagasawa T, Nakamura T, Yamada H (1990) Production of acrylic acid and methacrylic acid using Rhodococcus rhodochrous J1 nitrilase. Appl Microbiol Biotechnol 34:322–324

    CAS  Google Scholar 

  25. Nagasawa T, Shimizu H, Yamada H (1993) The superiority of the third-generation catalyst, Rhodococcus rhodochrous J1 nitrile hydratase, for industrial production of acrylamide. Appl Microbiol Biotechnol 40:189–195

    Article  CAS  Google Scholar 

  26. Nagasawa T, Takeuchi K, Nardi-Dei V, Mihara Y, Yamada H (1991) Optimum culture conditions for the production of cobalt-containing nitrile hydratase by Rhodococcus rhodochrous J1. Appl Microbiol Biotechnol 34:783–788

    Article  CAS  Google Scholar 

  27. Ni K, Wang H, Zhao L, Zhang M, Zhang S, Ren Y, Wei D (2013) Efficient production of (R)-(−)-mandelic acid in biphasic system by immobilized recombinant E. coli. J Biotechnol 167:433–440

    Article  CAS  PubMed  Google Scholar 

  28. Nicholson EB, Concaugh EA, Mobley HL (1991) Proteus mirabilis urease: use of a ureA-lacZ fusion demonstrates that induction is highly specific for urea. Infect Immun 59:3360–3365

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Okamoto S, Petegem FV, Patrauchan MA, Eltis LD (2010) AnhE, a metallochaperone involved in the maturation of a cobalt-dependent nitrile hydratase. J Biol Chem 285:25126–25133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rustler S, Müller A, Windeisen V, Chmura A, Fernandes B, Kiziak C, Stolz A (2007) Conversion of mandelonitrile and phenylglycinenitrile by recombinant E. coli cells synthesizing a nitrilase from Pseudomonas fluorescens EBC191. Enzyme Microb Technol 40:598–606

    Article  CAS  Google Scholar 

  31. Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    Article  PubMed  Google Scholar 

  32. Schmid A, Dordick J, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268

    Article  CAS  PubMed  Google Scholar 

  33. Shi Y, Yu H, Sun X, Tian Z, Shen Z (2004) Cloning of the nitrile hydratase gene from Nocardia sp. in Escherichia coli and Pichia pastoris and its functional expression using site-directed mutagenesis. Enzyme Microb Technol 35:557–562

    Article  CAS  Google Scholar 

  34. Sohoni SV, Nelapati D, Sathe S, Javadekar-Subhedar V, Gaikaiwari RP, Wangikar PP (2015) Optimization of high cell density fermentation process for recombinant nitrilase production in E. coli. Bioresour Technol 188:202–208

    Article  CAS  PubMed  Google Scholar 

  35. Sun X, Shi Y, Yu H, Shen Z (2004) Bioconversion of acrylnitrile to acrylamide using hollow-fiber membrane bioreactor system. Biochem Eng J 18(3):239–243

    Article  CAS  Google Scholar 

  36. Sun X, Yu H, Shen Z (2009) Deactivation kinetics of nitrile hydratase in free resting cells. Chin J Chem Eng 17(5):822–828

    Article  CAS  Google Scholar 

  37. Tan Y, Xu D, Ye L, Wang X (2012) Construction of a novel sacB-based system for marker-free gene deletion in Corynebacterium glutamicum. Plasmid 67:44–52

    Article  CAS  PubMed  Google Scholar 

  38. Vejvoda V, Kubac D, Davidova A, Kaplan O, Sulc M (2010) Purification and characterization of nitrilase from Fusarium solani IMI196840. Process Biochem 45:1115–1120

    Article  CAS  Google Scholar 

  39. Wohlgemuth R (2010) Biocatalysis—key to sustainable industrial chemistry. Curr Opin Biotechnol 21:713–724

    Article  CAS  PubMed  Google Scholar 

  40. Wu S, Fallon R, Payne M (1997) Over-production of stereoselective nitrile hydratase from Pseudomonas putida 5B in Escherichia coli: activity requires a novel downstream protein. Appl Microbiol Biotechnol 48:704–708

    Article  CAS  PubMed  Google Scholar 

  41. Wu S, Fogiel AJ, Petrillo KL, Jackson RE, Parker KN, DiCosimo R, Ben-Bassat A, O’Keefe DP, Payne MS (2008) Protein engineering of nitrilase for chemoenzymatic production of glycolic acid. Biotechnol Bioeng 99:717–720

    Article  CAS  PubMed  Google Scholar 

  42. Xiaobo X, Jianping L, Peilin C (2006) Advances in the research and development of acrylic acid production from biomass. Chin J Chem Eng 14:419–427

    Article  Google Scholar 

  43. Zhang J-F, Liu Z-Q, Zheng Y-G (2013) Improvement of nitrilase production from a newly isolated Alcaligenes faecalis mutant for biotransformation of iminodiacetonitrile to iminodiacetic acid. J Taiwan Inst Chem Eng 44:169–176

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Basic Research Project 973 (2013CB733600) and the National Natural Science Foundation of China (No. 21476126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huimin Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 381 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Yu, H., Chen, J. et al. Ammonium acrylate biomanufacturing by an engineered Rhodococcus ruber with nitrilase overexpression and double-knockout of nitrile hydratase and amidase. J Ind Microbiol Biotechnol 43, 1631–1639 (2016). https://doi.org/10.1007/s10295-016-1840-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1840-9

Keywords

Navigation