Skip to main content
Log in

Use of a genetically-engineered Escherichia coli strain as a sample process control for quantification of the host-specific bacterial genetic markers

  • Methods and protocols
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Quantitative PCR (qPCR) assays targeting the host-specific Bacteroides-Prevotella 16S rRNA genetic markers have been proposed as one of the promising approaches to identify the source of fecal contamination in environmental waters. One of the concerns of qPCR assays to environmental samples is the reliability of quantified values, since DNA extraction followed by qPCR assays are usually performed without appropriate sample process control (SPC) and internal amplification controls (IACs). To check the errors in sample processing and improve the reliability of qPCR results, it is essential to evaluate the DNA recovery efficiency and PCR amplification efficiency of the target genetic markers and correct the measurement results. In this study, we constructed a genetically-engineered Escherichia coli K12 strain (designated as strain MG1655 Δlac::kan) as sample process control and evaluated the applicability to environmental water samples. The recovery efficiency of the SPC strain MG1655 Δlac::kan was similar to that of Bacteroides fragilis JCM 11019, when DNA were extracted from water samples spiked with the two bacteria. Furthermore, the SPC was included in the qPCR assays with propidium monoazide (PMA) treatment, which can exclude the genetic markers from dead cells. No significant DNA loss was observed in the PMA treatment. The inclusion of both the SPC (strain MG1655 Δlac::kan) and IAC in qPCR assays with PMA treatment gave the assurance of reliable results of host-specific Bacteroides-Prevotella 16S rRNA genetic markers in environmental water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • APHA, AWWA, WEF (2005) Standard method for the examination of water and wastewater, 21st edn. American Public Health Association, Washington D.C

    Google Scholar 

  • Bae S, Wuertz S (2009) Discrimination of viable and dead fecal Bacteroidales bacteria by quantitative PCR with propidium monoazide. Appl Environ Microbiol 75:2940–2944

    Article  PubMed  CAS  Google Scholar 

  • Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462

    Article  PubMed  CAS  Google Scholar 

  • Cho J-C, Kim S-J (2000) Increase in bacterial community diversity in subsurface aquifers receiving livestock wastewater input. Appl Environ Microbiol 66:956–965

    Article  PubMed  CAS  Google Scholar 

  • D’Agostino M, Cook N, Rodriguez-Lazaro D, Rutjes S (2011) Nucleic acid amplification-based methods for detection of enteric viruses: definition of controls and interpretation of results. Food Environ Virol 2:55–60

    Article  Google Scholar 

  • Diez-Valcarce M, Cook N, Hernandez M, Rodriguez-Lazaro D (2011) Analytical application of a sample process control in detection of foodborne viruses. Food Anal Methods 4:614–618

    Article  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645

    Article  PubMed  CAS  Google Scholar 

  • Field KG, Bernhard AE, Brodeur TJ (2003) Molecular approaches to microbiological monitoring: fecal source detection. Environ Monit Assess 81:313–326

    Article  PubMed  CAS  Google Scholar 

  • Field KG, Samadpour M (2007) Fecal source tracking, the indicator paradigm, and managing water quality. Water Res 41:3517–3538

    Article  PubMed  CAS  Google Scholar 

  • Fremaux B, Boa T, Yost CK (2010) Quantitative real-time PCR assays for sensitive detection of Canada goose-specific fecal pollution in water sources. Appl Environ Microbiol 76:4886–4889

    Article  PubMed  CAS  Google Scholar 

  • Green HC, Field KG (2012) Sensitive detection of sample interference in environmental qPCR. Water Res 46:3251–3260

    Article  PubMed  CAS  Google Scholar 

  • Harwood VJ, Brownell M, Wang S, Lepo J, Ellender RD, Ajidahun A, Hellein KN, Kennedy E, Ye X, Flood C (2009) Validation and field testing of library-dependent microbial source tracking methods in the Gulf of Mexico. Water Res 43(19):4812–4819

    Article  PubMed  CAS  Google Scholar 

  • Haugland RA, Varma M, Sivaganesan M, Kelty C, Peed L, Shanks OC (2010) Evaluation of genetic markers from the 16S rRNA gene V2 region for use in quantitative detection of selected Bacteroidales sp. and human fecal waste by qPCR. Syst Appl Microbiol 33(6):348–357

    Article  PubMed  CAS  Google Scholar 

  • Ishii S, Segawa T, Okabe S (2013) Simultaneous quantification of multiple food and waterborne pathogens by use of microfluidic quantitative PCR. Appl Environ Microbiol 79:2891–2898

    Google Scholar 

  • Kassa H, Harrington B, Bisesi MS (2001) Risk of occupational exposure to Cryptosporidium, Giardia, and Campylobacter associated with the feces of giant Canada geese. Appl Occup Environ Hyg 16(9):905–909

    CAS  Google Scholar 

  • Kildare BJ, Leutenegger CM, McSwain BS, Bambic DG, Rajal VB, Wuertz S (2007) 16S rRNA-based assays for quantitative detection of universal, human-, cow-, and dog-specific fecal Bacteroidales, a Bayesian approach. Water Res 41:3701–3715

    Article  PubMed  CAS  Google Scholar 

  • Klappenbach JA, Saxman PR, Cole JR, Schmidt TM (2000) rrndb: the ribosomal RNA operon copy number database. Nucleic Acids Res 29:181–184

    Article  Google Scholar 

  • Kobashi Y, Hasebe A, Nishio M (2005) Antibiotic-resistant bacteria from feces of livestock, farmyard manure, and farmland in Japan—Case report. Microbes Environ 20(1):53–60

    Article  Google Scholar 

  • Kobayashi A, Sano D, Hatori J, Ishii S, Okabe S (2013) Chicken- and duck-associated Bacteroides-Prevotella genetic markers for detecting fecal contamination in environmental water. Appl Microbiol Biotechnol 97:7427–7437

    Article  PubMed  CAS  Google Scholar 

  • Meays CL, Broersma K, Nordin R, Mazumder A (2004) Source tracking fecal bacteria in water: a critical review of current method. J Environ Manag 73:71–79

    Article  Google Scholar 

  • Mieszkin S, Furet JP, Corthier G, Gourmelon M (2009a) Estimation of pig fecal contamination in a river catchment by real-time PCR using two pig-specific Bacteroidales 16S rRNA genetic markers. Appl Environ Microbiol 75:3045–3054

    Article  PubMed  CAS  Google Scholar 

  • Mieszkin S, Yala J-F, Joubrel R, Gourmelon M (2009b) Phylogenetic analysis of Bacteroidales 16S rRNA gene sequences from human and animal effluents and assessment of ruminant fecal pollution by real-time PCR. J Appl Microbiol 108:974–984

    Article  PubMed  Google Scholar 

  • Nielsen KM, Johnsen PJ, Bensasson D, Daffonchio D (2007) Release and persistence of extracellular DNA in the environment. Environ Biosafety Res 6(1–2):37–53

    Article  PubMed  CAS  Google Scholar 

  • Nocker A, Cheung CY, Camper AK (2006) Comparison of propidium monoazide with ethidium monoazide for differentiation of live versus dead bacteria by selective removal of DNA from dead cells. J Microbiol Methods 67(2):310–320

    Article  PubMed  CAS  Google Scholar 

  • Okabe S, Okayama N, Savichtcheva O, Ito T (2007) Quantification of host-specific Bacteroides-Prevotella 16S rRNA genetic markers for assessment of fecal pollution in freshwater. Appl Microbiol Biotechnol 74:890–901

    Article  PubMed  CAS  Google Scholar 

  • Okabe S, Shimazu Y (2007) Persistence of host-specific Bacteroides-Prevotella 16S rRNA genetic markers in environmental waters: effects of temperature and salinity. Appl Microbiol Biotechnol 76:935–944

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory. Manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Savichtcheva O, Okabe S (2006) Alternative indicators of fecal pollution: relations with pathogens and conventional indicators, current methodologies for direct pathogen monitoring, and future application perspectives. Water Res 40:2463–2476

    Article  PubMed  CAS  Google Scholar 

  • Savichtcheva O, Okayama N, Okabe S (2007) Relationships between Bacteroides 16S rRNA genetic markers and presence of bacterial enteric pathogens and conventional fecal indicators. Water Res 41:3615–3628

    Article  PubMed  CAS  Google Scholar 

  • Scott TM, Rose JB, Jenkins TM, Farrah SR, Lukasik J (2002) Microbial source tracking: current methodology and future directions. Appl Environ Microbiol 68:5796–5803

    Article  PubMed  CAS  Google Scholar 

  • Seurinck S, Defoirdt T, Verstraete W, Siciliano SD (2005) Detection and quantification of the human-specific HF183 Bacteroides 16S rRNA genetic marker with real-time PCR for assessment of human fecal pollution in freshwater. Environ Microbiol 7:249–259

    Article  PubMed  CAS  Google Scholar 

  • Shanks OC, Kelty CA, Sivaganesan M, Varma M, Haugland RA (2009) Quantitative PCR for genetic markers of human fecal pollution. Appl Environ Microbiol 75:5507–5513

    Article  PubMed  CAS  Google Scholar 

  • Simpson JM, Santo Domingo JW, Reaspner DJ (2002) Microbial source tracking: state of the science. Environ Sci Technol 24:5279–5288

    Article  Google Scholar 

  • Smalla K, van Overbeek LS, Pukall R, van Elsas JD (1993) Prevalence of nptII and Tn5 in kanamycin-resistant bacteria from different environments. FEMS Microbiol Ecol 13:47–58

    Article  CAS  Google Scholar 

  • Stewart JR, Ellender RD, Gooch JA, Jiang S, Myoda SP, Weisberg SB (2003) Recommendations for microbial source tracking: lessons from a methods comparison study. J Water Health 1(4):225–231

    PubMed  Google Scholar 

  • Stoeckel DM, Stelzer EA, Dick LK (2009) Evaluation of two spike-and-recovery controls for assessment of extraction efficiency in microbial source tracking studies. Water Res 43:4820–4827

    Article  PubMed  CAS  Google Scholar 

  • Taskin B, Gozen AG, Duran M (2011) Selective quantification of viable Escherichia coli in biosolids by quantitative PCR with propidium monoazide. Appl Environ Microbiol 77:4329–4335

    Article  PubMed  CAS  Google Scholar 

  • Varma M, Field R, Stinson M, Rukovets B, Wymer L, Haugland R (2009) Quantitative real-time PCR analysis of total and propidium monoazide-resistant fecal indicator bacteria in wastewater. Water Res 43:4790–4801

    Article  PubMed  CAS  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by Core Research for Evolutionary Science and Technology (CREST) from Japan Science and Technology Agency (JST) and grant-in-aid for Scientific Research A (23246094) from Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Okabe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 151 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, A., Sano, D., Taniuchi, A. et al. Use of a genetically-engineered Escherichia coli strain as a sample process control for quantification of the host-specific bacterial genetic markers. Appl Microbiol Biotechnol 97, 9165–9173 (2013). https://doi.org/10.1007/s00253-013-5188-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5188-z

Keywords

Navigation