Skip to main content
Log in

Persistence of host-specific Bacteroides–Prevotella 16S rRNA genetic markers in environmental waters: effects of temperature and salinity

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Host-specific Bacteroides–Prevotella 16S rRNA genetic markers are promising alternative indicators for identifying the sources of fecal pollution because of their high abundance in the feces of warm-blooded animals and high host specificity. However, little is known about the persistence of these genetic markers in environments after being released into environmental waters. The persistence of feces-derived four different host-specific Bacteroides–Prevotella 16S rRNA genetic makers (total, human-, cow-, and pig-specific) in environmental waters was therefore investigated at different incubation temperatures (4, 10, 20, and 30°C) and salinities (0, 10, 20, and 30 ppt) and then compared with the survival of conventional fecal-indicator organisms. The host-specific genetic markers were monitored by using real-time polymerase chain reaction (PCR) assays with specific primer sets. Each host-specific genetic marker showed similar responses in non-filtered river water and seawater: They persisted longer at lower temperatures and higher salinities. In addition, these markers did not increase in all conditions tested. Decay rates for indicator organisms were lower than those for host-specific genetic markers at temperature above 10°C. Furthermore, we investigated whether the PCR-detectable 16S rRNA genetic markers reflect the presence of live target cells or dead target cells in environmental waters. The result revealed that the detection of the Bacteroides–Prevotella 16S rRNA genetic markers in environmental waters mainly reflected the presence of ‘viable but non-culturable’ Bacteroides–Prevotella cells. These findings indicate that seasonal and geographical variations in persistence of these host-specific Bacteroides–Prevotella 16S rRNA genetic markers must be considered when we use them as alternative fecal indicators in environmental waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allsop K, Stickler JD (1985) An assessment of Bacteroides fragilis group organisms as indicators of human faecal pollution. J Appl Bacteriol 58:95–99

    CAS  PubMed  Google Scholar 

  • Anderson IC, Rhodes MW, Kator HI (1979) Sublethal stress in Escherichia coli: a function of salinity. Appl Environ Microbiol 38:1147–1152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson IC, Rhodes MW, Kator HI (1983) Seasonal variation in survival of Escherichia coli exposed in situ in membrane diffusion chamber water. Appl Environ Microbiol 45:1877–1883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson KL, Whitlock JE, Harwood VJ (2005) Persistence and differential survival of fecal indicator bacteria in subtropical water and sediments. Appl Environ Microbiol 71:3041–3048

    CAS  PubMed  PubMed Central  Google Scholar 

  • APHA, AWWA, WEF (1995) Standard method for the examination of water and wastewater (19th edn.). American Public Health Association, Washington, DC

    Google Scholar 

  • Bernhard AE, Field LG (2000) Identification of nonpoint sources of fecal pollution in coastal waters by using host-specific 16S ribosomal DNA genetic markers from fecal anaerobes. Appl Environ Microbiol 66:1587–1594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bordalo AA, Onrassami R, Dechsakulwatana C (2002) Survival of faecal indicator bacteria in tropical estuarine water. J Appl Microbiol 93:864–887

    CAS  PubMed  Google Scholar 

  • Bower PA, Scopel CO, Jensen ET, Depas MM, McLellan SL (2005) Detection of genetic markers of fecal indicator bacteria in Lake Michigan and determination of their relationship to Escherichia coli densities using standard microbiological methods. Appl Environ Microbiol 71:8305–8313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Byappanahalli M, Fujioka R (2004) Indigenous soil bacteria and low moisture may limit but allow faecal bacteria to multiply and become a minor population in tropical soils. Water Sci Technol 50:27–32

    CAS  PubMed  Google Scholar 

  • Carson CA, Christiansen JM, Yampara-Iquise H, Benson VW, Baffaut C, Davis JV, Broz RR, Kurtz WB, Rogers WM, Fales WH (2005) Specificity of a Bacteroides thetaiotaomicron marker for human feces. Appl Environ Microbiol 71:4945–4949

    CAS  PubMed  PubMed Central  Google Scholar 

  • Craig DL, Fallowfield HJ, Cromar NJ (2004) Use of microcosms to determine persistence of Escherichia coli in recreational coastal water and sediment and validation with in situ measurements. J Appl Microbiol 96:922–930

    CAS  PubMed  Google Scholar 

  • Davies CM, Evison LM (1991) Sunlight and the survival of enteric bacteria in natural waters. J Appl Bacteriol 70:265–274

    CAS  PubMed  Google Scholar 

  • Desmarais TR, Solo-Gabriele HM, Palmer CJ (2002) Influence of soil on fecal indicator organisms in tidally influenced subtropical environment. Appl Environ Microbiol 68:1165–1172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dick LK, Bernhard AE, Brodeur TJ, Domingo WS, Simpson JM, Walters SP, Field KG (2005) Host distributions of uncultivated fecal Bacteroidales bacteria reveal genetic markers for fecal source identification. Appl Environ Microbiol 71:3184–3191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dick LK, Field KG (2004) Rapid estimation of numbers of fecal Bacteroides by use of a quantitative PCR assay for 16S rRNA genes. Appl Environ Microbiol 70:5696–5697

    Google Scholar 

  • Enzinger RM, Cooper RC (1975) Role of bacteria and protozoa in the removal of Escherichia coli from estuarine waters. Appl Environ Microbiol 31:758–763

    Google Scholar 

  • Field KG, Bernhard AE, Brodeur TJ (2003) Molecular approaches to microbiological monitoring: fecal source detection. Environ Monit Assess 81:313–326

    CAS  PubMed  Google Scholar 

  • Fiksdal L, Maki JS, Lacroix SJ, Staley JT (1985) Survival and detection of Bacteroides spp., prospective indicator bacteria. Appl Environ Microbiol 49:148–150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griffith JF, Weinsberg SB, Mcgee CD (2003) Evaluation of microbial source tracking methods using mixed fecal sources in aqueous test samples. J Water Health 1:141–151

    PubMed  Google Scholar 

  • Josephson KL, Gerba CP, Pepper IL (1993) Polymerase chain reaction detection of nonviable bacteria pathogens. Appl Environ Microbiol 59:3513–3515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim G, Choi E, Lee D (2005) Diffuse and point pollution impacts on the pathogen indicator organism level in the Geum River, Korea. Sci Total Environ 340:94–105

    Google Scholar 

  • Kogure K, Shimidu U, Taga N (1979) A tentative direct microscopic method for counting living marine bacteria. Can J Microbiol 25:415–420

    CAS  PubMed  Google Scholar 

  • Kreader C A (1998) Persistence of PCR-detectable Bacteroides distasonis from human feces in river water. Appl Environ Microbiol 64:4103–4105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Layton A, McKay L, Williams D, Garrett V, Genry R, Sayler G (2006) Development of Bacteroides 16S rRNA gene TaqMan-based real-time PCR assays of total, human, and bovine fecal pollution in water. Appl Environ Microbiol 72:214–4224

    Google Scholar 

  • Livingston SJ, Kominos SD, Yee RB (1978) New medium for selection and presumptive identification of the Bacteroides fragilis group. J Clin Microbiol 7:448–453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marino RP, Gannon JJ (1991) Survival of fecal coliforms and fecal streptococci in storm drain sediment. Water Res 25:1089–1098

    Google Scholar 

  • McCambridge J, McMeekin TA (1979) Protozoan predation of Escherichia coli in estuarine waters. Water Res 13:659–663

    Google Scholar 

  • McCambridge J, McMeekin TA (1980) Relative effects of bacterial and protozoan predators on survival of Escherichia coli in estuarine water samples. Appl Environ Microbiol 40:907–911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meays CL, Broersma K, Nordin R, Mazumder A (2004) Source tracking fecal bacteria in water: a critical review of current methods. J Environ Manag 73:71–79

    Google Scholar 

  • Okabe S, Okayama N, Savichtcheva O, Ito T (2007) Identification and quantification of host-specific Bacteroides-Prevotella 16S rRNA genetic markers for assessment of fecal pollution in freshwaters. Appl Microbiol Biotechnol 74:890–901

    CAS  PubMed  Google Scholar 

  • Rhodes MW, Kator H (1988) Survival of Escherichia coli and Salmonella spp. in estuarine environments. Appl Environ Microbiol 54:2902–2907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodes MW, Anderson IC, Kator HI (1983) In situ development of sublethal stress in Escherichia coli: effects on enumeration. Appl Environ Microbiol 45:1870–1876

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roszak DB, Grimes DJ, Colwell RR (1984) Viable but no recoverable stage of Salmonella enteritidis in aquatic systems. Can J Microbiol 30:332–338

    Google Scholar 

  • Rozen Y, Belkin S (2001) Survival of enteric bacteria in seawater. FEMS Microbiol Rev 25:513–559

    CAS  PubMed  Google Scholar 

  • Scott TM, Rose JB, Jenkins TM, Farrah SR, Lukasik J (2002) Microbial source tracking: current methodology and future direction. Appl Environ Microbiol 68:5796–5803

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seurinck S, Defoirdt T, Verstraete W, Siciliano SD (2005) Detection and quantification of the human-specific HF183 Bacteroides 16S rRNA genetic marker with real-time PCR for assessment of human faecal pollution in freshwater. Environ Microbiol 7:249–259

    CAS  PubMed  Google Scholar 

  • Simpson JM, Santo Domingo JW, Reasoner DJ (2002) Microbial source trackings of science. Environ Sci Technol 36:5279–5288

    CAS  PubMed  Google Scholar 

  • Simpson JM, Santo Domingo JW, Reasoner DJ (2004) Assessment of equine fecal contamination: the search for alternative bacterial source-tracking targets. FEMS Microbial Ecology 47:65–75

    CAS  Google Scholar 

  • Solo-Gabriele HM, Wolfert MA, Desmarais TR, Palmer CJ (2000) Sources of Escherichia coli in a coastal subtropical environment. Appl Environ Microbiol 66:230–237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Troussellier M, Bonnefont JL, Courties C, Derrien A, Dupray E, Gauthier M, Gourmelon M, Joux F, Lebaron P, Martin Y, Pommepuy M (1998) Responses of enteric bacteria to environmental stress in seawater. Oceanol Acta 21:965–981

    Google Scholar 

  • Xu HS, Roberts N, Singleton FL, Attwell RW, Grimes DJ, Colwell RR (1982) Survival and viability of nonculturable Escherichia coli and Vibrio cholera in the estuarine and marine environment. Microbiol Ecol 8:313–323

    CAS  Google Scholar 

Download references

Acknowledgment

We gratefully appreciate Koji Kawata, Department of Urban and Environmental Engineering, Hokkaido University, for valuable comments. This research was partly supported by the 21st Century Center Of Excellence (COE) program “Sustainable Metabolic System of Water and Waste for Area-Based Society” and grant-in-aid for developmental science research (No.15360283) from the ministry of Education, Science, and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Okabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okabe, S., Shimazu, Y. Persistence of host-specific Bacteroides–Prevotella 16S rRNA genetic markers in environmental waters: effects of temperature and salinity. Appl Microbiol Biotechnol 76, 935–944 (2007). https://doi.org/10.1007/s00253-007-1048-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1048-z

Keywords

Navigation