Skip to main content

Advertisement

Log in

Lysine biosynthesis in microbes: relevance as drug target and prospects for β-lactam antibiotics production

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Plants as well as pro- and eukaryotic microorganisms are able to synthesise lysine via de novo synthesis. While plants and bacteria, with some exceptions, rely on variations of the meso-diaminopimelate pathway for lysine biosynthesis, fungi exclusively use the α-aminoadipate pathway. Although bacteria and fungi are, in principle, both suitable as lysine producers, current industrial fermentations rely on the use of bacteria. In contrast, fungi are important producers of β-lactam antibiotics such as penicillins or cephalosporins. The synthesis of these antibiotics strictly depends on α-aminoadipate deriving from lysine biosynthesis. Interestingly, despite the resulting industrial importance of the fungal α-aminoadipate pathway, biochemical reactions leading to α-aminoadipate formation have only been studied on a limited number of fungal species. In this respect, just recently an essential isomerisation reaction required for the formation of α-aminoadipate has been elucidated in detail. This review summarises biochemical pathways leading to lysine production, discusses the suitability of interrupting lysine biosynthesis as target for new antibacterial and antifungal compounds and emphasises on biochemical reactions involved in the formation of α-aminoadipate in fungi as an essential intermediate for both, lysine and β-lactam antibiotics production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alexander DC, Anders CL, Lee L, Jensen SE (2007) pcd mutants of Streptomyces clavuligerus still produce cephamycin C. J Bacteriol 189:5867–5874

    Article  CAS  Google Scholar 

  • Becker D, Selbach M, Rollenhagen C, Ballmaier M, Meyer TF, Mann M, Bumann D (2006) Robust Salmonella metabolism limits possibilities for new antimicrobials. Nature 440:303–307

    Article  CAS  Google Scholar 

  • Becker J, Zelder O, Hafner S, Schroder H, Wittmann C (2011) From zero to hero—design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab Eng 13:159–168

    Google Scholar 

  • Bland DM, Eisele NA, Keleher LL, Anderson PE, Anderson DM (2011) Novel genetic tools for diaminopimelic acid selection in virulence studies of Yersinia pestis. PLoS One 6:e17352

    Article  CAS  Google Scholar 

  • Casqueiro J, Gutierréz S, Banuelos O, Hijarrubia MJ, Martin JF (1999) Gene targeting in Penicillium chrysogenum: disruption of the lys2 gene leads to penicillin overproduction. J Bacteriol 181:1181–1188

    CAS  Google Scholar 

  • Cherezova L, Burnside KL, Rose TM (2011) Conservation of complex nuclear localization signals utilizing classical and non-classical nuclear import pathways in LANA homologs of KSHV and RFHV. PLoS One 6:e18920

    Article  CAS  Google Scholar 

  • de La Fuente JL, Rumbero A, Martin JF, Liras P (1997) Delta-1-piperideine-6-carboxylate dehydrogenase, a new enzyme that forms alpha-aminoadipate in Streptomyces clavuligerus and other cephamycin C-producing actinomycetes. Biochem J 327(Pt 1):59–64

    Google Scholar 

  • Fawcett PA, Usher JJ, Huddleston JA, Bleaney RC, Nisbet JJ, Abraham EP (1976) Synthesis of delta-(alpha-aminoadipyl)-cysteinyl-valine and its role in penicillin biosynthesis. Biochem J 157:651–660

    CAS  Google Scholar 

  • Fazius F, Shelest E, Gebhardt P, Brock M (2012) The fungal alpha-aminoadipate pathway for lysine biosynthesis requires two enzymes of the aconitase family for the isomerization of homocitrate to homoisocitrate. Mol Microbiol 86:1508–1530

    Article  CAS  Google Scholar 

  • Goraca A, Huk-Kolega H, Piechota A, Kleniewska P, Ciejka E, Skibska B (2011) Lipoic acid—biological activity and therapeutic potential. Pharmacol Rep 63:849–858

    CAS  Google Scholar 

  • Hamed RB, Gomez-Castellanos JR, Henry L, Ducho C, McDonough MA, Schofield CJ (2013) The enzymes of beta-lactam biosynthesis. Nat Prod Rep 30:21–107

    Article  CAS  Google Scholar 

  • Hijarrubia MJ, Aparicio JF, Martín JF (2002) Nitrate regulation of alpha-aminoadipate reductase formation and lysine inhibition of its activity in Penicillium chrysogenum and Acremonium chrysogenum. Appl Microbiol Biotechnol 59:270–277

    Article  CAS  Google Scholar 

  • Hijarrubia MJ, Aparicio JF, Martín JF (2003) Domain structure characterization of the multifunctional alpha-aminoadipate reductase from Penicillium chrysogenum by limited proteolysis. Activation of alpha-aminoadipate does not require the peptidyl carrier protein box or the reduction domain. J Biol Chem 278:8250–8256

    Article  CAS  Google Scholar 

  • Horbach R, Graf A, Weihmann F, Antelo L, Mathea S, Liermann JC, Opatz T, Thines E, Aguirre J, Deising HB (2009) Sfp-type 4'-phosphopantetheinyl transferase is indispensable for fungal pathogenicity. Plant Cell 21:3379–3396

    Article  CAS  Google Scholar 

  • Horie A, Tomita T, Saiki A, Kono H, Taka H, Mineki R, Fujimura T, Nishiyama C, Kuzuyama T, Nishiyama M (2009) Discovery of proteinaceous N-modification in lysine biosynthesis of Thermus thermophilus. Nat Chem Biol 5:673–679

    Article  CAS  Google Scholar 

  • Hudson AO, Gilvarg C, Leustek T (2008) Biochemical and phylogenetic characterization of a novel diaminopimelate biosynthesis pathway in prokaryotes identifies a diverged form of ll-diaminopimelate aminotransferase. J Bacteriol 190:3256–3263

    Article  CAS  Google Scholar 

  • Hutton CA, Perugini MA, Gerrard JA (2007) Inhibition of lysine biosynthesis: an evolving antibiotic strategy. Mol Biosyst 3:458–465

    Article  CAS  Google Scholar 

  • Ito A, Oishima T, Ou W, Omura T, Aoyagi H, Lee S, Mihara H, Izumiya N (1985) Effects of synthetic model peptides resembling the extension peptides of mitochondrial enzyme precursors on import of the precursors into mitochondria. J Biochem 98:1571–1582

    CAS  Google Scholar 

  • Jacobsen ID, Grosse K, Slesiona S, Hube B, Berndt A, Brock M (2010) Embryonated eggs as an alternative infection model to investigate Aspergillus fumigatus virulence. Infect Immun 78:2995–3006

    Article  CAS  Google Scholar 

  • Jaklitsch WM, Hampel W, Rohr M, Kubicek CP, Gamerith G (1986) alpha-Aminoadipate pool concentration and penicillin biosynthesis in strains of Penicillium chrysogenum. Can J Microbiol 32:473–480

    Article  CAS  Google Scholar 

  • Jia Y, Tomita T, Yamauchi K, Nishiyama M, Palmer DR (2006) Kinetics and product analysis of the reaction catalysed by recombinant homoaconitase from Thermus thermophilus. Biochem J 396:479–485

    Article  CAS  Google Scholar 

  • Jones DD, Stott KM, Howard MJ, Perham RN (2000) Restricted motion of the lipoyl-lysine swinging arm in the pyruvate dehydrogenase complex of Escherichia coli. Biochemistry 39:8448–8459

    Article  CAS  Google Scholar 

  • Jordan S, Hutchings MI, Mascher T (2008) Cell envelope stress response in Gram-positive bacteria. FEMS Microbiol Rev 32:107–146

    Article  CAS  Google Scholar 

  • Joseph R, Holt SC, Canale-Parola E (1973) Peptidoglycan of free-living anaerobic spirochetes. J Bacteriol 115:426–435

    CAS  Google Scholar 

  • Jürgen UJ, Meissner J, Reichenbach H, Weckesser J (1989) l-ornithine containing peptidoglycan-polysaccharide complex from the cell wall of the gliding bacterium Herpetosiphon aurantiacus. FEMS Microbiol Lett 60:247–250

    Article  Google Scholar 

  • Jürgens UJ, Meißner J, Fischer U, König WA, Weckesser J (1987) Orinithine as a constituent of the peptidoglycan of Chloroflexus aurantiacus, diaminopimelic acid in that of Chlorobium vibrioforme f. thiosulfatophilum. Arch Microbiol 148:72–76

    Article  Google Scholar 

  • Kasahara T, Kato T (2003) Nutritional biochemistry: a new redox-cofactor vitamin for mammals. Nature 422:832

    Article  CAS  Google Scholar 

  • Kobashi N, Nishiyama M, Tanokura M (1999) Aspartate kinase-independent lysine synthesis in an extremely thermophilic bacterium, Thermus thermophilus: lysine is synthesized via alpha-aminoadipic acid not via diaminopimelic acid. J Bacteriol 181:1713–1718

    CAS  Google Scholar 

  • Kong KF, Schneper L, Mathee K (2010) Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. APMIS 118:1–36

    Article  CAS  Google Scholar 

  • Kosuge T, Hoshino T (1998) Lysine is synthesized through the alpha-aminoadipate pathway in Thermus thermophilus. FEMS Microbiol Lett 169:361–367

    CAS  Google Scholar 

  • Kur K, Gabriel I, Morschhäuser J, Barchiesi F, Spreghini E, Milewski S (2010) Disruption of homocitrate synthase genes in Candida albicans affects growth but not virulence. Mycopathologia 170:397–402

    Article  CAS  Google Scholar 

  • Leitão AL, Enguita FJ, Martin JF, Santos Oliveira JF (2001) Effect of exogenous lysine on the expression of early cephamycin C biosynthetic genes and antibiotic production in Nocardia lactamdurans MA4213. Appl Microbiol Biotechnol 56:670–675

    Article  Google Scholar 

  • Lin Y, Volkman J, Nicholas KM, Yamamoto T, Eguchi T, Nimmo SL, West AH, Cook PF (2008) Chemical mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae. Biochemistry 47:4169–4180

    Article  CAS  Google Scholar 

  • Madduri K, Stuttard C, Vining LC (1989) Lysine catabolism in Streptomyces spp. is primarily through cadaverine: beta-lactam producers also make alpha-aminoadipate. J Bacteriol 171:299–302

    CAS  Google Scholar 

  • Maragoudakis ME (1967) Homoaconitic acid accumulation by a lysine-requiring yeast mutant. J Bacteriol 94:1060–1065

    CAS  Google Scholar 

  • Marco-Urrea E, Seifert J, von Bergen M, Adrian L (2012) Stable isotope peptide mass spectrometry to decipher amino acid metabolism in Dehalococcoides strain CBDB1. J Bacteriol 194:4169–4177

    Article  CAS  Google Scholar 

  • Martín JF, Ullán RV, Casqueiro J (2004) Novel genes involved in cephalosporin biosynthesis: the three-component isopenicillin N epimerase system. Adv Biochem Eng Biotechnol 88:91–109

    Google Scholar 

  • McCoy AJ, Adams NE, Hudson AO, Gilvarg C, Leustek T, Maurelli AT (2006) L, L-diaminopimelate aminotransferase, a trans-kingdom enzyme shared by Chlamydia and plants for synthesis of diaminopimelate/lysine. Proc Natl Acad Sci U S A 103:17909–17914

    Google Scholar 

  • Milewska MJ, Prokop M, Gabriel I, Wojciechowski M, Milewski S (2012) Antifungal activity of homoaconitate and homoisocitrate analogs. Molecules 17:14022–14036

    Article  CAS  Google Scholar 

  • Miyazaki J, Kobashi N, Nishiyama M, Yamane H (2003) Characterization of homoisocitrate dehydrogenase involved in lysine biosynthesis of an extremely thermophilic bacterium, Thermus thermophilus HB27, and evolutionary implication of beta-decarboxylating dehydrogenase. J Biol Chem 278:1864–1871

    Article  CAS  Google Scholar 

  • Morace G, Borghi E (2010) Fungal infections in ICU patients: epidemiology and the role of diagnostics. Minerva Anestesiol 76:950–956

    CAS  Google Scholar 

  • Moreno-Vargas L, Correa-Basurto J, Maroun RC, Fernandez FJ (2012) Homology modeling of the structure of acyl-CoA:isopenicillin N-acyltransferase (IAT) from Penicillium chrysogenum. IAT interaction studies with isopenicillin-N, combining molecular dynamics simulations and docking. J Mol Model 18:1189–1205

    Article  CAS  Google Scholar 

  • Mossmann D, Meisinger C, Vogtle FN (2012) Processing of mitochondrial presequences. Biochim Biophys Acta 1819:1098–1106

    Article  CAS  Google Scholar 

  • Nishida H, Nishiyama M (2012) Evolution of lysine biosynthesis in the phylum deinococcus-thermus. Int J Evol Biol 2012:6

  • Oyaizu H, Stackebrandt E, Schleifer KH, Ludwig W, Pohla H, Ito H, Hirata A, Oyaizu Y, Komagata K (1987) A radiation-resistant rod-shaped bacterium, Deinobacter grandis gen. nov., sp. nov., with peptidoglycan containing ornithine. IJSEM 37:62–67

    CAS  Google Scholar 

  • Özcengiz G, Demain AL (2013) Recent advances in the biosynthesis of penicillins, cephalosporins and clavams and its regulation. Biotechnol Adv 31:287–311

    Google Scholar 

  • Özcengiz G, Okay S, Unsaldi E, Taskin B, Liras P, Piret J (2010) Homologous expression of aspartokinase (ask) gene in Streptomyces clavuligerus and its hom-deleted mutant: effects on cephamycin C production. Bioeng Bugs 1:191–197

    Article  Google Scholar 

  • Palmer DR, Balogh H, Ma G, Zhou X, Marko M, Kaminskyj SG (2004) Synthesis and antifungal properties of compounds which target the alpha-aminoadipate pathway. Pharmazie 59:93–98

    CAS  Google Scholar 

  • Papes F, Kemper EL, Cord-Neto G, Langone F, Arruda P (1999) Lysine degradation through the saccharopine pathway in mammals: involvement of both bifunctional and monofunctional lysine-degrading enzymes in mouse. Biochem J 344(Pt 2):555–563

    Article  CAS  Google Scholar 

  • Park JH, Lee SY (2010) Metabolic pathways and fermentative production of l-aspartate family amino acids. Biotechnol J 5:560–577

    Article  CAS  Google Scholar 

  • Quintela JC, Pittenauer E, Allmaier G, Aran V, de Pedro MA (1995) Structure of peptidoglycan from Thermus thermophilus HB8. J Bacteriol 177:4947–4962

    CAS  Google Scholar 

  • Reeds PJ, Burrin DG (2000) The gut and amino acid homeostasis. Nutrition 16:666–668

    Article  CAS  Google Scholar 

  • Rius N, Demain AL (1997) Lysine epsilon-aminotransferase, the initial enzyme of cephalosporin biosynthesis in actinomycetes. J Microbiol Biotechnol 7:95–100

    CAS  Google Scholar 

  • Roach PL, Clifton IJ, Hensgens CM, Shibata N, Schofield CJ, Hajdu J, Baldwin JE (1997) Structure of isopenicillin N synthase complexed with substrate and the mechanism of penicillin formation. Nature 387:827–830

    Article  CAS  Google Scholar 

  • Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P (2008) The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 32:234–258

    Article  CAS  Google Scholar 

  • Schöbel F, Jacobsen ID, Brock M (2010) Evaluation of lysine biosynthesis as an antifungal drug target: biochemical characterization of Aspergillus fumigatus homocitrate synthase and virulence studies. Eukaryot Cell 9:878–893

    Article  Google Scholar 

  • Scott I (2012) Regulation of cellular homoeostasis by reversible lysine acetylation. Essays Biochem 52:13–22

    CAS  Google Scholar 

  • Sonawane VC (2006) Enzymatic modifications of cephalosporins by cephalosporin acylase and other enzymes. Crit Rev Biotechnol 26:95–120

    Article  CAS  Google Scholar 

  • Sonntag K, Eggeling L, De Graaf AA, Sahm H (1993) Flux partitioning in the split pathway of lysine synthesis in Corynebacterium glutamicum. Quantification by 13C- and 1H-NMR spectroscopy. Eur J Biochem 213:1325–1331

    Article  CAS  Google Scholar 

  • Strassman M, Ceci LN (1966) Enzymatic formation of cis-homoaconitic acid, an intermediate in lysine biosynthesis in yeast. J Biol Chem 241:5401–5407

    CAS  Google Scholar 

  • Teves F, Lamas-Maceiras M, Garcia-Estrada C, Casqueiro J, Naranjo L, Ullan RV, Scervino JM, Wu X, Velasco-Conde T, Martín JF (2009) Transcriptional upregulation of four genes of the lysine biosynthetic pathway by homocitrate accumulation in Penicillium chrysogenum: homocitrate as a sensor of lysine-pathway distress. Microbiology 155:3881–3892

    Article  CAS  Google Scholar 

  • Tomé D, Bos C (2007) Lysine requirement through the human life cycle. J Nutr 137:1642S–1645S

    Google Scholar 

  • Umemoto T, Ota T, Sagawa H, Kato K, Takada H, Tsujimoto M, Kawasaki A, Ogawa T, Harada K, Kotani S (1981) Chemical and biological properties of a peptidoglycan isolated from Treponema pallidum kazan. Infect Immun 31:767–774

    CAS  Google Scholar 

  • Vaz FM, Wanders RJ (2002) Carnitine biosynthesis in mammals. Biochem J 361:417–429

    Article  CAS  Google Scholar 

  • Velasco AM, Leguina JI, Lazcano A (2002) Molecular evolution of the lysine biosynthetic pathways. J Mol Evol 55:445–459

    Article  CAS  Google Scholar 

  • Watanabe N, James MN (2011) Structural insights for the substrate recognition mechanism of ll-diaminopimelate aminotransferase. Biochim Biophys Acta 1814:1528–1533

    Article  CAS  Google Scholar 

  • Weidner G, Steffan B, Brakhage AA (1997) The Aspergillus nidulans lysF gene encodes homoaconitase, an enzyme involved in the fungus-specific lysine biosynthesis pathway. Mol Gen Genet 255:237–247

    Article  CAS  Google Scholar 

  • Wu X, Garcia-Estrada C, Vaca I, Martin JF (2012) Motifs in the C-terminal region of the Penicillium chrysogenum ACV synthetase are essential for valine epimerization and processivity of tripeptide formation. Biochimie 94:354–364

    Article  CAS  Google Scholar 

  • Xu H, Andi B, Qian J, West AH, Cook PF (2006) The alpha-aminoadipate pathway for lysine biosynthesis in fungi. Cell Biochem Biophys 46:43–64

    Article  CAS  Google Scholar 

  • Zhou Y, Hingorani MM (2012) Impact of individual proliferating cell nuclear antigen-DNA contacts on clamp loading and function on DNA. J Biol Chem 287:35370–35381

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work of MB is supported by grants from the German Science foundation (DFG), the Jena School for Microbial Communication (JSMC) and funds from the Hans-Knoell-Institute (HKI). The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Brock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fazius, F., Zaehle, C. & Brock, M. Lysine biosynthesis in microbes: relevance as drug target and prospects for β-lactam antibiotics production. Appl Microbiol Biotechnol 97, 3763–3772 (2013). https://doi.org/10.1007/s00253-013-4805-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4805-1

Keywords

Navigation