Skip to main content
Log in

Homology modeling of the structure of acyl coA:isopenicillin N-acyltransferase (IAT) from Penicillium chrysogenum. IAT interaction studies with isopenicillin-N, combining molecular dynamics simulations and docking

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In the last step of penicillin biosynthesis, acyl-CoA:isopenicillin N acyltransferase (IAT) (E.C. 2.3.1.164) catalyzes the conversion of isopenicillin N (IPN) to penicillin G. IAT substitutes the α-aminoadipic acid side chain of IPN by a phenylacetic acid phenolate group (from phenylacetyl-CoA). Having a three-dimensional (3D) structure of IAT helps to determine the steps involved in side chain exchange by identifying the atomic details of substrate recognition. We predicted the IAT 3-D structure (α- and β-subunits), as well as the manner of IPN and phenylacetyl-CoA bind to the mature enzyme (β-subunit). The 3D IAT prediction was achieved by homology modeling and molecular docking in different snapshots, and refined by molecular dynamic simulations. Our model can reasonably interpret the results of a number of experiments, where key residues for IAT processing as well as strictly conserved residues most probably involved with enzymatic activity were mutated. Based on the results of docking studies, energies associated with the complexes, and binding constants calculated, we identified a site located in the region generated by β1, β2 and β5 strands, which forms part of the central structure of β-subunit, as the potential binding site of IPN. The site comprises the amino acid residues Cys103, Asp121, Phe122, Phe123, Ala168, Leu169, His170, Gln172, Phe212, Arg241, Leu262, Asp264, Arg302, Ser309, and Arg310. Through hydrogen bonds, the IPN binding site establishes interactions with Cys103, Leu169, Gln172, Asp264 and Arg310. Our model is also validated by a recently revealed crystal structure of the mature enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Fawcett PA, Usher JJ, Abraham EP (1975) Behavior of tritium labeled isopenicillin N and 6-aminopenicillanic acid acyltransferase from Penicillium chrysogenum. Biochem J 151:741–746

    CAS  Google Scholar 

  2. Álvarez E, Cantoral JM, Barredo JL, Díez B, Martín JF (1987) Purification to homogeneity and characterization of acyl-coenzyme A:6-aminopenicillanic acid acyltransferase of Penicillium chrysogenum. Antimicrob Agents Chemother 31:1675–1682

    Google Scholar 

  3. Alonso MJ, Bermejo F, Reglero A, Fernández-Cañon JM, González de Buitrago G, Luengo JM (1988) Enzymatic síntesis of penicillins. J Antibiot 41:1074–1084

    CAS  Google Scholar 

  4. Whiteman PA, Abraham EP, Baldwin JE, Fleming MD, Schofield CJ, Sutherland JD, Willis AC (1990) Acyl-coenzyme A:6-aminopenicillanic acid acyltransferase from Penicillium chrysogenum and Aspergillus nidulans. FEBS Lett 262:342–344

    Article  CAS  Google Scholar 

  5. Álvarez E, Meesschaert B, Montenegro E, Gutiérrez S, Díez B, Barredo JL, Martín JF (1993) The isopenicillin N acyltransferase of Penicillium chrysogenum has isopenicillin N amidohydrolase, 6-aminopenicillanic acid acyltransferase and penicillin amidase activities, all of wich are encoded by the single penDE gene. Eur J Biochem 215:323–332

    Article  Google Scholar 

  6. Martin-Villacorta J, Reglero A, Luengo JM (1990) Acyl CoA: 6-APA acyltransferase from Penicillium chrysogenum. Studies on its hydrolitic activity. J Antibiot 44:108–110

    Google Scholar 

  7. Martin-Villacorta J, Reglero A, Luengo JM (1990) Biosynthesis of methoxy benzylpenicillins. Biotechnol Forum Europe 8:60–62

    Google Scholar 

  8. Ferrero MA, Reglero A, Martinez-Blanco H, Fernández-Valverde M, Luengo JM (1990) In vitro synthesis of new penicillins containing keto acids as side chains. Antimicrob Agents Chemother 35:1931–1932

    Google Scholar 

  9. Martínez-Blanco H, Reglero A, Luengo JM (1991) In vitro synthesis of different naturally-occurring, semisynthetic and synthetic penicillins using a new and effective enzymatic coupled system. J Antibiot 44:1252–1258

    Google Scholar 

  10. Barredo JL, Van Solingen P, Díez B, Álvarez E, Cantoral JM, Kattevilder A, Smaal EB, Groenen MAM, Veenstra AE, Martín JF (1989) Cloning and characterization of the acyl-coenzyme A:6-aminopenicillanic acid acyltransferase gene of Penicillium chrysogenum. Gene 83:291–300

    Article  CAS  Google Scholar 

  11. Montenegro E, Barredo JL, Gutiérrez S, Díez B, Álvarez E, Martín JF (1990) Cloning, characterization of the acyl-CoA:6-aminopenicillanic acid acyltransferase gene of Aspergillus nidulans and linkage to the isopenicillin N synthase gene. Mol Gen Genet 221:322–330

    Article  CAS  Google Scholar 

  12. Muller WH, Bovenberg RA, Groothuis MH, Kattevilder F, Smaal EB, Van der Voort LH, Verkleij AJ (1992) Involvement of microbodies in penicillin biosynthesis. Biochim Biophys Acta 1116:210–213

    Article  CAS  Google Scholar 

  13. Muller WH, Essers J, Humbel BM, Verkleij AJ (1995) Enrichment of Penicillium chrysogenum microbodies by isopycnic centrifugation in nycodenz as visualized with immuno-electron microscopy. Biochim Biophys Acta 1245:215–220

    Article  CAS  Google Scholar 

  14. Theilgaard HB, Kristiansen KN, Henriksen CM, Nielsen J (1997) Purification and characterization of delta-(l-alpha-aminoadipyl)-l-cysteinyl-d-valine synthetase from Penicillium chrysogenum. Biochem J 327:185–191

    CAS  Google Scholar 

  15. Aplin RT, Baldwin JE, Cole SCJ, Sutherland JD, Tobin MB (1993) On the production of α, β-heterodimeric acyl-coenzyme A:isopenicillin N acyltransferase of Penicillium chrysogenum: studies using a recombinant source. FEBS Lett 319:166–170

    Article  CAS  Google Scholar 

  16. Aplin RT, Baldwin JE, Roach PL, Robinson CV, Schofiel CJ (1993) Investigations into the posttranslational modification and mechanism of isopenicillin N:acyl-CoA acyltransferase using electrospray mass spectrometry. Biochem J 294:357–363

    CAS  Google Scholar 

  17. Tobin MB, Baldwin JE, Cole SCJ, Miller JR, Skatrud PL, Sutherland JD (1993) The requeriment for subunit interation in the production of Penicillium crysogenum acyl-coenzyme A: isopenicillin N acyltransferase in Escherichia coli. Gene 132:199–206

    Article  CAS  Google Scholar 

  18. Fernández FJ, Gutierrez S, Velasco J, Montenegro E, Marcos AT, Martín JF (1994) Molecular characterization of three loos-of-function mutations in the isopenicillin N-acyltransferase gene (pen DE) of Penicillium chrysogenum. J Bacteriol 176:4941–4948

    Google Scholar 

  19. Fernández FJ, Cardoza RE, Montenegro E, Velasco J, Gutiérrez S, Martín JF (2003) The isopenicillin N acyltransferases of Aspergillus nidulans and Penicillium chrysogenum differ in their ability to maintain the 40-kDa alpha beta heterodimer in an undissociated form. Eur J Biochem 270:1958–1968

    Article  Google Scholar 

  20. Tobin MB, Cole SCJ, Kovacevic S, Miller JR, Baldwin JE, Sutherland JD (1994) Acyl-coenzyme A:isopenicillin N aciltranferase from Penicillium chrysogenum: effect of amino acid substitutions at Ser227, Ser230 and Ser309 on proenzyme cleavage and activity. FEMS Microbiol Lett 121:39–46

    Article  CAS  Google Scholar 

  21. Tobin MB, Cole SCJ, Miller JR, Baldwin JE, Sutherland JD (1995) Amino-acid substitutions in the cleavage site of acyl-coenzyme A:isopenicillin N acyltransferase from Penicillium chrysogenum: effect on proenzyme cleavage and activity. Gene 162:29–35

    Article  CAS  Google Scholar 

  22. Hensgens CM, Kroezinga EA, van Montfort BA, van der Laan JM, Sutherland JD, Dijkstra BW (2002) Purification, crystallization and preliminary X-ray diffraction of Cys103Ala acyl coenzyme A: isopenicillin N acyltransferase from Penicillium chrysogenum. Acta Crystallogr D58:716–718

    CAS  Google Scholar 

  23. Yoshida H, Hensgens CMH, van der Laan JM, Sutherland JD, Hart DJ, Dijkstra BW (2005) An approach to prevent aggregation during the purification and crystallization of wild type acyl coenzyme A:isopenicillin N acyltransferase from Penicillium chrysogenum. Protein Expr Purif 41:61–67

    Article  CAS  Google Scholar 

  24. Bokhove M, Yoshida H, Hensgens CM, van der Laan JM, Sutherland JD, Dijkstra BW (2010) Structures of an isopenicillin N converting Ntn-hydrolase reveal different catalytic roles for the active site residues of precursor and mature enzyme. Structure 18:301–308

    Article  CAS  Google Scholar 

  25. Mirky AE, Pauling L (1936) On the structure native, denatured and coagulated proteins. Proc Natl Acad Sci USA 22:439–447

    Article  Google Scholar 

  26. Anfinsen CB, Haber E, Sela M, White FH (1961) The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc Natl Acad Sci USA 47:1309–1314

    Article  CAS  Google Scholar 

  27. Havel TF, Snow ME (1991) A new method for building protein conformations from sequence alignments with homologues of known structure. J Mol Biol 217:1–7

    Article  CAS  Google Scholar 

  28. Hilbert M, Bohm G, Jaenicke R (1993) Structural relationships of homologous proteins as a fundamental principle in homology modeling. Proteins 17:138–151

    Article  CAS  Google Scholar 

  29. Sali A, Blundell TL (1993) Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  Google Scholar 

  30. Srinivasan S, March CJ, Sudarsanam S (1993) An automated method for modeling proteins on known templates using distance geometry. Protein Sci 2:277–289

    Article  CAS  Google Scholar 

  31. Bairoch A, Apweiler R (1997) The Swiss-Prot protein sequence database: its relevance to human molecular medical research. J Mol Med 75:312–316

    CAS  Google Scholar 

  32. Bennett-Lovsey RM, Herbert AD, Sternberg JE, Kelley LA (2008) Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre. Proteins 70:611–625

    Article  CAS  Google Scholar 

  33. Labarga A, Valentin F, Anderson M, Lopez R (2007) Web services at the European bioinformatics institute. Nucleic Acids Res 35:W6–W11

    Article  Google Scholar 

  34. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  35. Bowie JU, Lüthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253:164–170

    Article  CAS  Google Scholar 

  36. Flores TP, Orengo CA, Moss DS, Thornton JM (1993) Comparison of conformational characteristics in structurally similar protein pairs. Protein Sci 2:1811–1826

    Article  CAS  Google Scholar 

  37. Raghava GPS (2002) APSSP2: A combination method for protein secondary structure prediction based on neural network and example based learning. CASP5 A–132

  38. Rost B, Yachdav G, Liu J (2004) The PredictProtein Server. Nucleic Acids Res 32:W321–W326

    Article  CAS  Google Scholar 

  39. Cole C, Barber JD, Barton GJ (2008) The Jpred 3 secondary structure prediction server. Nucleic Acids Res 36:W197–W201. doi:10.1093/nar/gkn238

  40. Cuff JA, Clamp ME, Siddiqui AS, Finlay M, Barton GJ (1998) Jpred: a consensus secondary structure prediction server. Bioinformatics 14:892–893

    Article  CAS  Google Scholar 

  41. Cuff JA, Barton GJ (1999) Evaluation and improvement of multiple sequence methods for protein secondary structure prediction. Protein Struct Funct Genet 34:508–519

    Article  CAS  Google Scholar 

  42. Dong A, Xu X, Gu J, Edwards AM, Joachimiak A, Savchenko A (2007) Crystal structure of tetR-family transcriptional regulator. doi:10.2210/pdb2rek/pdb

  43. Rossocha M, Schultz-Heienbrok R, von Moeller H, Coleman JP, Saenger W (2005) Conjugated bile acid hydrolase is a tetrameric N-terminal thiol hydrolase with specific recognition of its cholyl but not of its tauryl product. Biochemistry 44:5739–5748

    Article  CAS  Google Scholar 

  44. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  CAS  Google Scholar 

  45. Lambert C, Leonard N, De Bolle X, Depiereux E (2002) ESyPred3D: prediction of proteins 3D structures. Bioinformatics 18:1250–1256

    Article  CAS  Google Scholar 

  46. Fiser A, Do RK, Sali A (2000) Modeling of loops in protein structures. Protein Sci 9:1753–1773

    Article  CAS  Google Scholar 

  47. MacKerell AD, Bashford M, Bellot M, Dunbrack RL, Evanseck JD, Field MJ, Fisher S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus MJ (1998) All-atom empirical potencial for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  48. Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys 151:283–312

    Article  CAS  Google Scholar 

  49. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten KL (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  50. Humphrey W, Dalke A, Schulten K (1996) VMD-Visual Molecular Dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  51. Diemand AV, Scheib H (2004) MolTalk, a programming library for protein structures and structure analysis. BMC Bioinformatics 5:1–7

    Article  Google Scholar 

  52. Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB, Snoeyink J, Richardson JS, Richardson DC (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35:W375–W383

    Article  Google Scholar 

  53. Melo F, Feytmans E (1997) Novel knowledge-based mean force potential at atomic level. J Mol Biol 267:207–222

    Article  CAS  Google Scholar 

  54. Melo F, Feytmans E (1998) Assessing protein structures with a non-local atomic interaction energy. J Mol Biol 277:1141–1152

    Article  CAS  Google Scholar 

  55. Morris AL, MacArthur MW, Hutchinson EG, Thornton JM (1992) Stereochemical quality of protein structure coordinates. Proteins 12:345–364

    Article  CAS  Google Scholar 

  56. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  57. Leach AR (2001) Energy minimisation and related methods for exploring the energy surface. In Molecular modelling. Principles and applications. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  58. Tama F, Gadea FX, Marques O, Sanejouand YH (2000) Building-block approach for determining low-frequency normal modes of macromolecules. Proteins 41:1–7

    Article  CAS  Google Scholar 

  59. Tama F, Sanejouand YH (2001) Conformational change of proteins arising from normal mode calculations. Protein Eng 14:1–6

    Article  CAS  Google Scholar 

  60. Delarue M, Sanejouand YH (2002) Simplified normal mode analysis of conformational transitions in DNA-dependent polymerases: the elastic network model. J Mol Biol 320:1011–1024

    Article  CAS  Google Scholar 

  61. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  62. Hetényi C, Van der Spoel D (2002) Efficient docking of peptides to proteins without prior knowledge of the binding site. Protein Sci 11:1729–1737

    Article  Google Scholar 

  63. Hetényi C, van der Spoel D (2006) Blind docking of drug-sized compounds to proteins with up to a thousand residues. FEBS Lett 580:1447–1450

    Article  Google Scholar 

  64. Alfonso P, Pampín S, Estrada J, Rodríguez-Rey JC, Giraldo P, Sancho J, Pocoví M (2005) Miglustat (NB-DNJ) works as a chaperone for mutated acid beta-glucosidase in cells transfected with several Gaucher disease mutations. Blood Cells Mol Dis 35:268–276

    Article  CAS  Google Scholar 

  65. Rosenfeld RJ, Goodsell DS, Musah RA, Morris GM, Goodin DB, Olson AJ (2003) Automated docking of ligands to an artificial active site: augmenting crystallographic analysis with computer modeling. J Comput Aided Mol Des 17:525–536

    Article  CAS  Google Scholar 

  66. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Peterson GA, Ayala P, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, Revision A.9. Gaussian Inc, Pittsburgh, PA

    Google Scholar 

  67. Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci USA 89:10915–10919

    Article  CAS  Google Scholar 

  68. Altschul SF (1991) Amino acid substitution matrices from an information theoretic perspective. J Mol Biol 219:555–565

    Article  CAS  Google Scholar 

  69. Brannigan JA, Dodson G, Duggleby HJ, Moody PC, Smith JL, Tomchick DR, Murzin AG (1995) A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature 378:416–419

    Article  CAS  Google Scholar 

  70. Pei J, Grishin NV (2003) Peptidase family U34 belongs to the superfamily of N-terminal nucleophile hydrolases. Protein Sci 12:1131–1135

    Article  CAS  Google Scholar 

  71. Manavalan P, Curtis-Johnson W (1983) Sensitivity of circular dichroism to protein tertiary structure class. Nature 305:831–832

    Article  CAS  Google Scholar 

  72. Liang J, Edelsbrunner H, Woodward C (1998) Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Sci 7:1884–1897

    Article  CAS  Google Scholar 

  73. Liang J, Edelsbrunner H, Fu P, Sudhakar PV, Subramaniam S (1998) Analytical shape computation of macromolecules: II. Inaccessible cavities in proteins. Proteins 33:18–29

    Article  CAS  Google Scholar 

  74. Kisselev OG, Kao J, Ponder JW, Fann YC, Gautam N, Marshall GR (1998) Light-activated rhodopsin induces structural binding motif in G protein alpha subunit. Proc Natl Acad Sci USA 95:4270–4275

    Article  CAS  Google Scholar 

  75. Li HL, Galue A, Meadows L, Ragsdale DS (1999) A molecular basis for the different local anesthetic affinities of resting versus open and inactivated states of the sodium channel. Mol Pharmacol 55:134–141

    CAS  Google Scholar 

  76. Marshall GR, Ragno R, Makara GM, Arimoto R, Kisselev O (1999) Bound conformations for ligands for G-protein coupled receptors. Lett Pept Sci 6:283–288

    CAS  Google Scholar 

  77. Okada A, Miura T, Takeuchi H (2001) Protonation of histidine and histidine-tryptophan interaction in the activation of the M2 ion channel from influenza a virus. Biochemistry 40:6053–6060

    Article  CAS  Google Scholar 

  78. Zacharias N, Dougherty DA (2002) Cation-pi interactions in ligand recognition and catalysis. Trends Pharmacol Sci 23:281–287

    Article  CAS  Google Scholar 

  79. Quenner SW, Neuss N (1982) In: Morin EB, Morgan M (eds) The chemistry and biology of β-lactam antibiotics, vol 3. Academic, London, pp 1–81

    Google Scholar 

  80. Cremades N, Sancho J, Freire E (2006) The native-state ensemble of proteins provides clues for folding, misfolding and function. Trends Biochem Sci 31:494–496

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The investigation was supported in part by grants from the Consejo Nacional de Ciencia y Tecnología (CONACyT), Mexico (Grant No. 132353), and Instituto Politécnico Nacional (Secretaría de Investigación y Posgrado and Comisión de Operación y Fomento de Actividades Académicas) and Instituto de Ciencia y Tecnología del Distrito Federal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Fernández.

Electronic supplementary material

More details on sequence alignment, homology modeling, molecular dynamics simulations and docking. This material and three-dimensional structures of IAT models described in this manuscript are available from the authors upon request.

(DOC 26 kb)

(DOC 26 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno-Vargas, L., Correa-Basurto, J., Maroun, R.C. et al. Homology modeling of the structure of acyl coA:isopenicillin N-acyltransferase (IAT) from Penicillium chrysogenum. IAT interaction studies with isopenicillin-N, combining molecular dynamics simulations and docking. J Mol Model 18, 1189–1205 (2012). https://doi.org/10.1007/s00894-011-1143-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1143-z

Keywords

Navigation