Skip to main content

Advertisement

Log in

New approach for the detection of non-ribosomal peptide synthetase genes in Bacillus strains by polymerase chain reaction

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bacillus strains produce non-ribosomal lipopeptides that can be grouped into three families: surfactins or lichenysins, iturins and fengycins or plispastatins. These biosurfactants show a broad spectrum of biological activities. To detect strains able to produce these lipopeptides, a new polymerase chain reaction screening approach was developed using degenerated primers based on the intraoperon alignment of adenylation and thiolation nucleic acid domains of all enzymes implicated in the biosynthesis of each lipopeptide family. The comparative bioinformatics analyses of each operon led to the design of four primer pairs for the three families taking into account the differences between open reading frames of each synthetase gene. Tested on different Bacillus sp. strains, this technique was used successfully to detect not only the expected genes in the lipopeptide producing strains but also the presence of a plispastatin gene in Bacillus subtilis ATCC 21332 and a gene showing a high similarity with the polyketide synthase type I gene in the B. subtilis ATCC 6633 genome. It also led to the discovery of the presence of non-ribosomal peptide synthetase genes in Bacillus thuringiensis serovar berliner 1915 and in Bacillus cereus LMG 2098. In addition, this work highlighted the differences between the fengycin and plipastatin operon at DNA level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ayuso-Sacido A, Genilloud O (2005) New PCR primers for screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microbial Ecol 49:10–24

    Article  CAS  Google Scholar 

  • Barrios-Llerena ME, Burja AM, Wright PC (2007) Genetic analysis of polyketide synthase and peptide synthetase genes in cyanobacteria as a mining tool for secondary metabolites. J Ind Microbiol Biotechnol 34:443–56

    Article  CAS  Google Scholar 

  • Bonmatin JM, Laprevote O, Peypoux F (2003) Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity–structure relationships to design new bioactive agents. Comb Chem High Throughput Screen 6:541–556

    CAS  Google Scholar 

  • Caboche S, Pupin M, Leclere V, Fontaine A, Jacques Ph, Kucherov G (2008) Norine: a database of non-ribosomal peptides. Nucl Acids Res 36:326–331

    Article  Google Scholar 

  • Chen XH, Vater J, Piel J, Franke P, Scholz R, Schneider K, Koumoutsi A, Hitzeroth G, Grammel N, Strittmatter AW, Gottschalk G, Süssmuth RD, Borriss R (2006) Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB 42. J Bacteriol 188:4024–4036

    Article  CAS  Google Scholar 

  • Chen XH, Koumoutsi A, Scholz R, Schneider K, Vater J, Süssmuth R, Piel J, Borriss R (2009) Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotechnol 140:27–37

    Article  CAS  Google Scholar 

  • Chollet-Imbert M, Gancel F, Slomianny C, Jacques Ph (2009) Differentiated pellicle organization and lipopeptide production in standing culture of Bacillus subtilis strains. Arch Microbiol 191:63–71

    Article  CAS  Google Scholar 

  • Duitman EH, Hamoen LW, Rembold M, Venema G, Seitz H, Saenger W, Bernhard F, Reinhardt R, Schmidt M, Ullrich C, Stein T, Leenders F, Vater J (1999) The mycosubtilin synthetase of Bacillus subtilis ATCC 6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc Natl Acad Sci USA 96:13294–13299

    Article  CAS  Google Scholar 

  • Eshita SM, Roberto NH, Beale JM, Mamiya BM, Workman RF (1995) Bacillomycin Lc, a new antibiotic of the iturin group: Isolations, structures, and antifungal activities of the congeners. J Antibiotics 48:1240–1247

    CAS  Google Scholar 

  • Gancel F, Montastruc L, Liu T, Zhao L, Nikov I (2009) Lipopeptide overproduction by cell immobilization on iron-enriched light polymer particles. Process Biochem 44:975–978

    Article  CAS  Google Scholar 

  • Giacomodonato MN, Pettinari J, Souto GI, Meandez SB, Loapez NI (2001) A PCR-based method for the screening of bacterial strains with antifungal activity in suppressive soybean rhizosphere. World J Microbiol Biotechnol 17:51–55

    Article  CAS  Google Scholar 

  • Grangemard I, Wallach J, Maget-Dana R, Peypoux F (2001) Lichenysin: a more efficient cation chelator than surfactin. Appl Biochem Biotechnol 90:199–210

    Article  CAS  Google Scholar 

  • Jacques Ph, Hbid C, Destain J, Razafindralambo H, Paquot M, Pauw E, Thonart P (1999) Optimization of biosurfactant lipopeptide production from Bacillus subtilis S499 by Plackett–Burman design. Appl Biochem Biotechnol 77:223–233

    Article  Google Scholar 

  • Jullien N (2007) AmplifX software 1.44. http://ifrjr.nord.univ-mrs.fr/AmplifX-Home-page. Accessed 12 Nov 2006

  • Kluge B, Vater J, Salnikow J, Eckart K (1988) Studies on the biosynthesis of surfactin, a lipopeptide antibiotic from Bacillus subtilis ATCC 21332. FEBS Lett 231:107–110

    Article  CAS  Google Scholar 

  • Kunst F et al (1997) The complete genome sequence of the Gram-positive model organism Bacillus subtilis (strain 168). Nature 390:249–256

    Article  CAS  Google Scholar 

  • Lee YK, Kim SB, Park CS, Kim JG, Oh HM, Yoon BD, Kim HS (2005) Chromosomal integration of sfp gene in Bacillus subtilis to enhance bioavailability of hydrophobic liquids. Appl Microbiol Biotechnol 67:789–794

    Article  CAS  Google Scholar 

  • Leclère V, Béchet M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques Ph (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584

    Article  Google Scholar 

  • Marahiel M (1997) Protein templates for the biosynthesis of peptide antibiotics. Chem Biol 4:561–567

    Article  CAS  Google Scholar 

  • Molenaar D, Bringel F, Schuren FH, De Vos WM, Siezen RJ, Kleerebezem M (2005) Exploring Lactobacillus plantarum genome diversity by using microarrays. J Bacteriol 187:6119–6127

    Article  CAS  Google Scholar 

  • Moyne AL, Cleveland TE, Tuzun S (2004) Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. FEMS Microbiol Lett 234:43–49

    Article  CAS  Google Scholar 

  • Nakano MM, Marahiel MA, Zuber P (1988) Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in B. subtilis. J Bacteriol 170:5662–5668

    CAS  Google Scholar 

  • Needleman SB, Wunsch CD (1970) Needleman–Wunsch global alignment. J Mol Biol 48:443–453

    Article  CAS  Google Scholar 

  • Neilan B, Dittmann E, Rouhiainen L, Bass RA, Schaub V, Sivonen K, Börner T (1999) Nonribosomal peptide synthesis and toxigenicity of Cyanobacteria. J Bacteriol 181:4089–4097

    CAS  Google Scholar 

  • Nikolskaya AN, Panaccione DG, Walton JD (1995) Identification of peptide synthetase-encoding genes from filamentous fungi producing host-selective phytotoxins or analogs. Gene 165:207–211

    Article  CAS  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:116–125

    Article  Google Scholar 

  • Ongena M, Jacques P, Toure Y, Destain J, Jabrane A, Thonart P (2005) Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl Microbiol Biotech 69:29–38

    Article  CAS  Google Scholar 

  • Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotech 51:553–563

    Article  CAS  Google Scholar 

  • Rajendran N (1999) Identification and cloning of a gene locus encoding peptide synthetase of Pseudomonas fluorescens by two sets of PCR primers. Z Naturforschung 54:105–109

    CAS  Google Scholar 

  • Ramarathnam R, Bo S, Chen Y, Dilantha WG, Xueven G, Kievit T (2007) Molecular and biochemical detection of fengycin and bacillomycin D-producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat. Can J Microbiol 53:901–911

    Article  CAS  Google Scholar 

  • Rupf S, Merte K, Eschrich K (1999) Quantification of bacteria in oral samples by competitive polymerase chain reaction. J Dent Res 78:850–856

    Article  CAS  Google Scholar 

  • Schneider J, Taraz K, Budzikiewicz H, Deleu M, Thonart P, Jacques P (1999) The structure of two fengycins from Bacillus subtilis S499. Z Naturforsch 54c:859–866

    Google Scholar 

  • Schwarzer D, Finking R, Marahiel MA (2003) Non ribosomal peptides: from genes to products. Nat Prod Rep 20:275–287

    Article  CAS  Google Scholar 

  • Sieber SA, Marahiel MA (2005) Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem Rev 105:715–738

    Article  CAS  Google Scholar 

  • Steller S, Vollenbroich D, Leenders F, Stein T, Conrad B, Hofemeister J, Jacques Ph, Thonart P, Vater J (1999) Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Chem Biol 6:31–41

    Article  CAS  Google Scholar 

  • Steller S, Sokoll A, Wilde C, Bernhard F, Franke P, Vater J (2004) Initiation of surfactin biosynthesis and the role of the SrfD-thioesterase protein. Biochemistry 43:11331–11343

    Article  CAS  Google Scholar 

  • Turgay K, Marahiel MA (1994) A general approach for identifying and cloning of peptide synthetase genes. Peptide Res 7:238–241

    CAS  Google Scholar 

  • Tsuge K, Akiyama T, Shoda M (2001) Cloning, sequencing and characterization of iturinA operon. J Bacteriol 183:6265–6273

    Article  CAS  Google Scholar 

  • Tsuge K, Matsui K, Itaya M (2007) Production of the non-ribosomal peptide plipastatin in Bacillus subtilis regulated by three relevant gene blocks assembled in a single movable DNA segment. J Biotechnol 129:592–603

    Article  CAS  Google Scholar 

  • Umezawa H, Aoyagi T, Nishikiori T, Okuyama A, Yamagishi Y, Hamada M, Takeuchi T (1986) Plipastatins: new inhibitors of phospholipase A2, produced by Bacillus cereus BMG302-fF67. I. Taxonomy, production, isolation and preliminary characterization. J Antibiot 39:737–744

    CAS  Google Scholar 

  • Vanittanakom N, Loeffler W, Koch U, Jung G (1986) Fengycin—a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29–3. J Antibiot 39:888–901

    CAS  Google Scholar 

  • Vater J, Kablitz B, Wilde C, Franke P, Mehta N, Cameotra SS (2002) Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol 68:6210–6219

    Article  CAS  Google Scholar 

  • Wu S, Zhong J, Huan L (2006) Genetics of subpeptin JM4-A and subpeptin JM4-B production by Bacillus subtilis JM4. Biochem Biophys Res Comm 344:1147–1154

    Article  CAS  Google Scholar 

  • Xiong Z, Jiang Y, Qi D, Lu H, Yang F, Yang J, Chen L, Sun L, Xu X, Xue Y, Zhu Y, Jin Q (2008) Complete genome sequence of the extremophilic Bacillus cereus strain Q1 with industrial applications. J Bacteriol 191:1120–1121

    Article  Google Scholar 

  • Yakimov MM, Kroger A, Slepak TN, Giuliano L, Timmius KN, Golyshin PN (1998) A putative lichenysin A synthetase operon in Bacillus licheniformis: initial characterization. Biochim Biophys Acta 1399:141–153

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Université des Sciences et Technologies de Lille, the Region Nord Pas de Calais, the Ministere de la Recherche Scientifique (ANR) and the European Funds for Regional Development. Arthur Tapi has a fellowship from Ivorian government. The authors thank William Everett for the re-reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Jacques.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1

Number and size (*bp) of amplicons obtained by in silico PCR (AmplifX Software) from lipopeptide genes deduced from the genome of strains indicated in Table 3. (DOC 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tapi, A., Chollet-Imbert, M., Scherens, B. et al. New approach for the detection of non-ribosomal peptide synthetase genes in Bacillus strains by polymerase chain reaction. Appl Microbiol Biotechnol 85, 1521–1531 (2010). https://doi.org/10.1007/s00253-009-2176-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2176-4

Keywords

Navigation