Skip to main content
Log in

Improvement of tolerance to freeze–thaw stress of baker’s yeast by cultivation with soy peptides

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The tolerance to freeze–thaw stress of yeast cells is critical for frozen-dough technology in the baking industry. In this study, we examined the effects of soy peptides on the freeze–thaw stress tolerance of yeast cells. We found that the cells cultured with soy peptides acquired improved tolerance to freeze–thaw stress and retained high leavening ability in dough after frozen storage for 7 days. The final quality of bread regarding its volume and texture was also improved by using yeast cells cultured with soy peptides. These findings promote the utilization of soy peptides as ingredients of culture media to improve the quality of baker’s yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Coutinho C, Bernardes E, Felix D, Panek AD (1988) Trehalose as cryoprotectant for preservation of yeast strains. J Biotechnol 7:23–32

    Article  CAS  Google Scholar 

  • Hino A, Mihara K, Nakashima K, Takano H (1990) Trehalose levels and survival ratio of freeze-tolerant versus freeze-sensitive yeasts. Appl Environ Microbiol 56:1386–1391

    Article  CAS  Google Scholar 

  • Hirasawa R, Yokoigawa K (2001) Leavening ability of baker’s yeast exposed to hyperosmotic media. FEMS Microbiol Lett 194:159–162

    Article  CAS  Google Scholar 

  • Hirasawa R, Yokoigawa K, Isobe Y, Kawai H (2001) Improving the freeze tolerance of bakers’ yeast by loading with trehalose. Biosci Biotechnol Biochem 65:522–526

    Article  CAS  Google Scholar 

  • Hori G, Wang MF, Chan YC, Komatsu T, Wong Y, Chen TH, Yamamoto K, Nagaoka S, Yamamoto S (2001) Soy protein hydrolyzate with bound phospholipids reduces serum cholesterol levels in hypercholesterolemic adult male volunteers. Biosci Biotechnol Biochem 65:72–78

    Article  CAS  Google Scholar 

  • Izawa S, Sato M, Yokoigawa K, Inoue Y (2004a) Intracellular glycerol influences resistance to freeze stress in Saccharomyces cerevisiae: analysis of a quadruple mutant in glycerol dehydrogenase genes and glycerol-enriched cells. Appl Microbiol Biotechnol 66:108–114

    Article  CAS  Google Scholar 

  • Izawa S, Ikeda K, Maeta K, Inoue Y (2004b) Deficiency in the glycerol channel Fps1p confers increased freeze tolerance to yeast cells: application of the fps1Δ mutant to frozen dough technology. Appl Microbiol Biotechnol 66:303–305

    Article  CAS  Google Scholar 

  • Kaul SC, Obuchi K, Iwahashi H, Komatsu Y (1992) Cryoprotection provided by heat shock treatment in Saccharomyces cerevisiae cells: induction of a 33 kDa protein and protection against freezing injury. Cell Mol Biol 38:135–143

    CAS  PubMed  Google Scholar 

  • Morita Y, Nakamori S, Takagi H (2003) L-proline accumulation and freeze tolerance of Saccharomyces cerevisiae are caused by a mutation in the PRO1 gene encoding γ-glutamyl kinase. Appl Environ Microbiol 69:212–219

    Article  CAS  Google Scholar 

  • Murakami Y, Yokoigawa K, Kawai F, Kawai H (1996) Lipid composition of commercial baker’s yeast having different freeze-tolerance in frozen dough. Biosci Biotechnol Biochem 60:1874–1876

    Article  CAS  Google Scholar 

  • Myers DK, Joseph VM, Pehm S, Galvagno M, Attfield PV (1998) Loading of Saccharomyces cerevisiae with glycerol leads to enhanced fermentation in sweet bread doughs. Food Microbiol 15:51–58

    Article  CAS  Google Scholar 

  • Park J-I, Grant CM, Attfield PV, Dawes IW (1997) The freeze–thaw stress response of the yeast Saccharomyces cerevisiae is growth phase specific and is controlled by nutritional state via the RAS–cyclic AMP signal transduction pathway. Appl Environ Microbiol 63:3818–3824

    Article  CAS  Google Scholar 

  • Shima J, Hino A, Yamada-Iyo C, Suzuki Y, Nakajima R, Watanabe H, Mori K, Takano H (1999) Stress tolerance in doughs of Saccharomyces cerevisiae trehalase mutants derived from commercial baker’s yeast. Appl Environ Microbiol 65:2841–2846

    Article  CAS  Google Scholar 

  • Shima J, Sakata-Tsuda Y, Suzuki Y, Nakajima R, Watanabe H, Kawamoto S, Takano H (2003) Disruption of the CAR1 gene encoding arginase enhances freeze tolerance of the commercial baker’s yeast Saccharomyces cerevisiae. Appl Environ Microbiol 69:715–718

    Article  CAS  Google Scholar 

  • Takagi H, Iwamoto F, Nakamori S (1997) Isolation of freeze-tolerant laboratory strains of Saccharomyces cerevisiae from proline-analogue-resistant mutants. Appl Microbiol Biotechnol 47:405–411

    Article  CAS  Google Scholar 

  • Takenaka A, Annaka H, Kimura Y, Aoki H, Igarashi K (2003) Reduction of paraquat-induced oxidative stress in rats by dietary soy peptide. Biosci Biotechnol Biochem 67:278–283

    Article  CAS  Google Scholar 

  • Tanghe A, Van Dijck P, Dumortier F, Teunissen A, Hohmann S, Thevelein JM (2002) Aquaporin expression correlates with freeze tolerance in baker’s yeast, and overexpression improves freeze tolerance in industrial strains. Appl Environ Microbiol 68:5981–5989

    Article  CAS  Google Scholar 

  • Tsuruki T, Kishi K, Takahashi M, Tanaka M, Matsukawa T, Yoshikawa M (2003) Soymetide, an immunostimulating peptide derived from soybean β-conglycinin, is an fMLP agonist. FEBS Lett 540:206–210

    Article  CAS  Google Scholar 

  • Tsuruki T, Takahata K, Yoshikawa M (2004) A soy-derived immunostimulating peptide inhibits etoposide-induced alopecia in neonatal rats. J Invest Dermatol 122:848–850

    Article  CAS  Google Scholar 

  • Yokoigawa K, Sato M, Soda K (2006) Simple improvement in freeze-tolerance of bakers’ yeast with poly-γ-glutamate. J Biosci Bioeng 102:215–219

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are sincerely grateful to Ms. Sayuri Kitagawa for her constructive suggestion and useful information. This study was partly supported by the Bio-oriented Technology Research Advancement Institution (BRAIN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shingo Izawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izawa, S., Ikeda, K., Takahashi, N. et al. Improvement of tolerance to freeze–thaw stress of baker’s yeast by cultivation with soy peptides. Appl Microbiol Biotechnol 75, 533–537 (2007). https://doi.org/10.1007/s00253-007-0855-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-0855-6

Keywords

Navigation