Skip to main content
Log in

Biohybrid nanosystems with polymer nanofibers and nanotubes

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Advanced techniques for the preparation of nanofibers, core shell fibers, hollow fibers, and rods and tubes from natural and synthetic polymers with diameters down to a few nanometers have recently been established. These techniques, among them electro- and co-electrospinning and specific template methods, allow the incorporation not only of semiconductor or catalytic nanoparticles or chromophores but also enzymes, proteins, microorganism, etc., directly during the preparation process into these nanostructures in a very gentle way. One particular advantage is that biological objects such as, for instance, proteins can be immobilized in a fluid environment within these polymer-based nano-objects in such a way that they keep their native conformation and the corresponding functions. The range of applications of such biohybrid nanosystems is extremely broad, for instance, in the areas of biosensorics, catalysis, drug delivery, or optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bognitzki M, Hou HQ, Ishaque M, Frese T, Hellwig M, Schwarte C, Schaper A, Wendorff JH, Greiner A (2000) Polymer, metal, and hybrid nano- and mesotubes by coating degradable polymer template fibers (TUFT process). Adv Mater 12:637–640

    CAS  Google Scholar 

  • Boudriot U, Goetz B, Dersch R, Greiner A, Wendorff JH (2005) Role of electrospun nanofibers in stem cell technologies and tissue engineering. Macromol Symp 225:9–16

    CAS  Google Scholar 

  • Chen RJ, Zhang Y, Wang D, Da H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838–3839

    CAS  PubMed  Google Scholar 

  • Dersch R, Liu T, Schaper AK, Greiner A, Wendorff JH (2003) Electrospun nanofibers: internal structure and intrinsic orientation. J Polym Sci A Polym Chem 41:545–553

    CAS  Google Scholar 

  • Dersch R, Greiner A, Wendorff JH (2004) Polymer nanofibers by electrospinning. Encyclopedia of nanoscience and nanotechnology. Marcel Dekker, pp 2931–2938

  • Dersch R, Steinhart M, Boudrio U, Greiner A, Wendorf JH (2005) Nanoprocessing of polymers: applications in medicine, sensorics, catalysis, photonics. Polym Adv Technol 16:276–282

    CAS  Google Scholar 

  • Dzenis Y (2004) Spinning continuous fibers for nanotechnology. Science 304:1917–1919

    CAS  PubMed  Google Scholar 

  • Elias HG (1992) Makromoleküle. Hüthig & Wepf, Basel, pp 501–560

    Google Scholar 

  • Fischer T, Hampp N (2004) Encapsulation of purple membrane patches into polymeric nanofibres by electrospinning. IEEE Trans NanoBioScience 2:118–120

    Google Scholar 

  • Füchtjohann N (2006) Immobilisierung von Proteinen in elektrogesponnenen polymeren. Nanofasern Ph.d thesis, Marburg

  • Graeser M (2004) Darstellung von bimetallischen Palladium/Rhodium Nanopartikel und deren Einsatz in der Katalyse. Diploma thesis, Marburg

  • Hampp H, Oesterhelt D (2004) Bacteriorhodospin and its potential in technical applications. In: Mirkins C, Niemeyer C (eds) Nanobiotechnology: concepts, applications and perspectives. Wiley-VCH, Weinheim, pp 146–167

    Google Scholar 

  • Hohman MM, Shin M, Rutledge G, Brenner MP (2001a) Electrospinning and electrically forced jets. II. Applications. Phys Fluids 13:2221–2236

    CAS  Google Scholar 

  • Hohman MM, Shin M, Rutledge G, Brenner MP (2001b) Electrospinning and electrically forced jets. I. Stability theory. Phys Fluids 13:2201–2220

    CAS  Google Scholar 

  • Hou H, Jun Z, Reuning A, Schaper A, Wendorff JH, Greiner A (2002) Poly(p-xylylene) nanotubes by coating and removal of ultrathin polymer template fibers. Macromolecules 35:2429–2431

    CAS  Google Scholar 

  • Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253

    CAS  Google Scholar 

  • Jia H, Zhu G, Vugrinovich B, Kataphinan W, Reneker DH, Wang P (2002) Enzyme carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalyst. Biotechnol Prog 18:1027–1032

    CAS  PubMed  Google Scholar 

  • Johnsson B, Lofas S, Linquist G (1991) Immobilization of proteins to a carboxymethyldextran modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal Biochem 198:268–277

    CAS  PubMed  Google Scholar 

  • Jun Z, Aigner A, Czubayko F, Kissel T, Wendorff JH, Greiner A (2005) Poly(vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings. Biomacromolecules 6:1484–1488

    Google Scholar 

  • Kenawy ER, Bowlin GL, Mansfield K, Layman J, Simpson DG, Sanders EH, Wnek GE (2002) Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J Control Release 81:57–64

    CAS  Google Scholar 

  • Koh CJ, Ataly A (2004) Tissue engineering, stem cells, and cloning. Opportunities for regenerative medicine. J Am Soc Nephrol 15:1113–1125

    PubMed  Google Scholar 

  • Li D, Xia Y (2004) Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett 4:933–938

    CAS  Google Scholar 

  • Li D, Herricks T, Xia Y (2003) Magnetic nanofibers of nickel ferrite prepared by electrospinning. Appl Phys Lett 83:4586–4588

    CAS  Google Scholar 

  • Li D, Wang Y, Xia Y (2004) Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv Mater 16:361–366

    Google Scholar 

  • Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60:613–621

    CAS  PubMed  Google Scholar 

  • Matthews JA, Boland ED, Wnek GE, Simpson DG, Bowlin GL (2003) Electrospinning of collagen type II: a feasibility study. J Bioact Compat Polym 18:125–134

    CAS  Google Scholar 

  • Müller RH, Mäder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm 50:161–177

    PubMed  Google Scholar 

  • Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma Z (2005) An introduction to electrospinning and nanofibers. World Scientific, Singapore

    Google Scholar 

  • Reneker DH, Yarin AL, Fong H, Koombhongse S (2000) Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J Appl Phys 87:4531–4547

    CAS  Google Scholar 

  • Reznik SN, Yarin AL, Theron A, Zussman E (2004) Transient and steady shapes of droplets attached to a surface in a strong electric field. J Fluid Mech 516:349–377

    Google Scholar 

  • Sano S, Kato K, Ikada Y (1993) Introduction of functional groups onto the surface of polyethylene for protein immobilization. Biomaterials 14:817–822

    CAS  PubMed  Google Scholar 

  • Schlecht S, Tan ST, Yosef M, Dersch R, Wendorff JH, Jia ZH, Schaper AK (2005) Towards linear arrays of quantum dots via polymer nanofibers and nanorods. Chem Mater 17:809–814

    CAS  Google Scholar 

  • Scouten HW, Luong JHT, Brown RS (1995) Enzyme or protein immobilization techniques for applications in biosensor design. Trends Biotechnol 13:178–185

    CAS  Google Scholar 

  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20

    CAS  PubMed  Google Scholar 

  • Stasiak M (2004) Katalytische Aktivität von Scansdiumtriflat immobilisiert in elektrosgesponnenen Nanofasern. Diploma thesis, Marburg

  • Steinhart M, Wendorff JH, Greiner A, Wehrspohn RB, Nielsch K, Schilling J, Choi J, Gösele U (2002) Polymer nanotubes by wetting of ordered porous templates. Science 296:1997

    CAS  PubMed  Google Scholar 

  • Steinhart M, Jia Z, Schaper A, Wehrspohn R, Gösele U, Wendorff JH (2003a) Palladium nanotubes with tailored wall morphologies. Adv Mater 15:706–709

    CAS  Google Scholar 

  • Steinhart M, Senz S, Wehrspohn RB, Gösele U, Wendorff JH (2003b) Curvature-directed crystallization of poly(vinylidene difluoride) in nanotube walls. Macromolecules 36:3646–3651

    CAS  Google Scholar 

  • Steinhart M, Wehrspohn RB, Gösele U, Wendorff JH (2004) Nanotubes by wetting, a modular assembly system. Angew Chem Int Ed Engl 43:1334–1344

    CAS  PubMed  Google Scholar 

  • Sun Z, Zussman E, Yarin A, Wendorff JH, Greiner A (2003) Compound core/shell polymer nanofibers by co-electrospinning. Adv Mater 15:1929–1932

    CAS  Google Scholar 

  • Theron A, Zussman E, Yarin AL (2001) Electrostatic field-assisted alignment of electrospun nanofibers. Nanotechnology 12:384–390

    Google Scholar 

  • Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    CAS  PubMed  Google Scholar 

  • Yarin AL, Gottlieb O, Roisman IV (1997) Chaotic rotation of small particles shaped as triaxial ellipsoids in simple shear flow. J Fluid Mech 340:83–100

    Google Scholar 

  • Yarin AL, Koombhongse S, Reneker DH (2001) Bending instability in electrospinning of nanofibers. J Appl Phys 89:3018–3026

    CAS  Google Scholar 

  • Yoshimoto H, Shin YM, Terai H, Vacanti JP (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24:2077–2082

    CAS  PubMed  Google Scholar 

  • Zhang Y, Huang ZM, Xu X, Lim CT, Ramakrishna S (2004) Preparation of core-shell structured PCL-r-gelatin bi-component nanofibers by coaxial electrospinning. Chem Mater 16:3406–3409

    CAS  Google Scholar 

  • Zussman E, Theron A, Yarin AL (2003) Formation of nanofiber crossbars in electro-spinning. Appl Phys Lett 82:973–975

    CAS  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the financial support by the Volkswagen Foundation (Program Komplexe Materialien:Verbundprojekte der Natur-, Ingenieur-, und Biowissenschaften).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Wendorff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greiner, A., Wendorff, J.H., Yarin, A.L. et al. Biohybrid nanosystems with polymer nanofibers and nanotubes. Appl Microbiol Biotechnol 71, 387–393 (2006). https://doi.org/10.1007/s00253-006-0356-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0356-z

Keywords

Navigation