Skip to main content

Advertisement

Log in

Yeasts Associated with Culex pipiens and Culex theileri Mosquito Larvae and the Effect of Selected Yeast Strains on the Ontogeny of Culex pipiens

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The success of mosquitoes in nature has been linked to their microbiota and bacteria in particular. Yet, knowledge on their symbioses with yeasts is lacking. To explore possible associations, culturable yeasts were isolated from wild larvae of Culex pipiens and Culex theileri. These yeasts were classified using restriction fragment length polymorphism (RFLP) analyses and identified by sequencing the D1/D2 region of the 26S rRNA gene. Representative strains of Candida, Cryptococcus, Galactomyces, Hannaella, Meyerozyma, Pichia, Rhodosporidium, Rhodotorula, Trichosporon and Wickerhamomyces were isolated. Our results provide, to our knowledge, the first records of the yeast microbiota from wild mosquito larvae and show that they may harbour potential clinically relevant yeast species, including the well-known opportunistic human pathogen Candida albicans. Also, diminished numbers of yeast isolates originating from adults, compared to larvae, support the hypothesis of microbial reduction/elimination during adult emergence and extend it to include yeasts. In addition, strains of Candida albicans, Candida glabrata, Candida pseudolambica, Cryptococcus gattii, Metschnikowia bicuspidata, Saccharomyces cerevisiae and Wickerhamomyces anomalus were tested as sole feed during a 21-day feeding experiment wherein cumulative larval growth, survival and pupation of Cx. pipiens were recorded. Although most yeasts supported larval growth in a similar manner to the positive control S. cerevisiae strain, the different yeast strains impacted differently on Culex pipiens ontogeny. Notably, survival and pupation of larvae were negatively impacted by a representative strain of the primary pathogen C. gattii — signifying some yeasts to be natural antagonists of mosquitoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rueda LM (2008) Global diversity of mosquitoes (Insecta: Diptera: Culicidae) in freshwater. Hydrobiologia 595:477–487. doi:10.1007/s10750-007-9037-x

    Article  Google Scholar 

  2. World Health Organisation (2004) Global strategic framework for integrated vector management. World Health Organisation, Geneva

  3. Ricci I, Damiani C, Capone A, DeFreece C, Rossi P, Favia G (2012) Mosquito/microbiota interactions: from complex relationships to biotechnological perspectives. Curr Opin Microbiol 15:278–284. doi:10.1016/j.mib.2012.03.004

    Article  PubMed  Google Scholar 

  4. Bahia AC, Dong Y, Blumberg BJ, Mlambo G, Tripathi A, BenMarzouk-Hidalgo OJ, Chandra R, Dimopoulos G (2014) Exploring Anopheles gut bacteria for Plasmodium blocking activity. Environ Microbiol 16:2980–94. doi:10.1111/1462-2920.12381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boissière A, Tchioffo MT, Bachar D, Abate L, Marie A, Nsango SE, Shahbazkia HR, Awono-Ambene PH, Levashina EA, Christen R, Morlais I (2012) Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection. PLoS Pathog 8:1–12. doi:10.1371/journal.ppat.1002742

    Article  Google Scholar 

  6. Cirimotich CM, Dong Y, Clayton AM, Sandiford SL, Souza-Neto JA, Mulenga M, Dimopoulos G (2011) Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science 332:855–8. doi:10.1126/science.1201618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dong Y, Manfredini F, Dimopoulos G (2009) Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog 5:e1000423. doi:10.1371/journal.ppat.1000423

    Article  PubMed  PubMed Central  Google Scholar 

  8. Xi Z, Ramirez JL, Dimopoulos G (2008) The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog 4:e1000098. doi:10.1371/journal.ppat.1000098

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chouaia B, Rossi P, Epis S, Mosca M, Ricci I, Damiani C, Ulissi U, Crotti E, Daffonchio D, Bandi C, Favia G (2012) Delayed larval development in Anopheles mosquitoes deprived of Asaia bacterial symbionts. BMC Microbiol 12:S2. doi:10.1186/1471-2180-12-S1-S2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Coon KL, Vogel KJ, Brown MR, Strand MR (2014) Mosquitoes rely on their gut microbiota for development. Mol Ecol 23:2727–2739. doi:10.1111/mec.12771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Favia G, Ricci I, Marzorati M, Negri I, Alma A, Sacchi L, Bandi C, Daffonchio D (2008) Bacteria of the genus Asaia: a potential paratransgenic weapon against malaria. Adv Exp Med Biol 627:49–59. doi:10.1007/978-0-387-78225-6_4

    Article  CAS  PubMed  Google Scholar 

  12. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O’Neill SL (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139:1268–78. doi:10.1016/j.cell.2009.11.042

    Article  PubMed  Google Scholar 

  13. Ricci I, Damiani C, Rossi P, Capone A, Scuppa P, Cappelli A, Ulissi U, Mosca M, Valzano M, Epis S, Crotti E, Daffonchio D, Alma A, Sacchi L, Mandrioli M, Bandi C, Favia G (2011) Mosquito symbioses: from basic research to the paratransgenic control of mosquito-borne diseases. J Appl Entomol 135:487–493. doi:10.1111/j.1439-0418.2011.01613.x

    Article  Google Scholar 

  14. Ricci I, Mosca M, Valzano M, Damiani C, Scuppa P, Rossi P, Crotti E, Cappelli A, Ulissi U, Capone A, Esposito F, Alma A, Mandrioli M, Sacchi L, Bandi C, Daffonchio D, Favia G (2011) Different mosquito species host Wickerhamomyces anomalus (Pichia anomala): perspectives on vector-borne diseases symbiotic control. Antonie van Leeuwenhoek. Int J Gen Mol Microbiol 99:43–50. doi:10.1007/s10482-010-9532-3

    Google Scholar 

  15. Urubschurov V, Janczyk P (2011) Biodiversity of yeasts in the gastrointestinal ecosystem with emphasis on its importance for the host. In: Grillo O, Venora G (eds) The dynamical processes of biodiversity—case studies of evolution and spatial distribution, InTech., pp 277–302

    Google Scholar 

  16. Gusmão DS, Santos AV, Marini DC, Bacci M, Berbert-Molina MA, Lemos FJA (2010) Culture-dependent and culture-independent characterization of microorganisms associated with Aedes aegypti (Diptera: Culicidae) (L.) and dynamics of bacterial colonization in the midgut. Acta Trop 115:275–281. doi:10.1016/j.actatropica.2010.04.011

    Article  PubMed  Google Scholar 

  17. Gusmão DS, Santos AV, Marini DC, Russo É de S, Peixoto AMD, Bacci Júnior M, Berbert-Molina MA, Lemos FJA (2007) First isolation of microorganisms from the gut diverticulum of Aedes aegypti (Diptera: Culicidae): new perspectives for an insect-bacteria association. Mem Inst Oswaldo Cruz 102:919–924. doi:10.1590/S0074-0276200700080000

    Article  PubMed  Google Scholar 

  18. Ricci I, Damiani C, Scuppa P, Mosca M, Crotti E, Rossi P, Rizzi A, Capone A, Gonella E, Ballarini P, Chouaia B, Sagnon NF, Esposito F, Alma A, Mandrioli M, Sacchi L, Bandi C, Daffonchio D, Favia G (2011) The yeast Wickerhamomyces anomalus (Pichia anomala) inhabits the midgut and reproductive system of the Asian malaria vector Anopheles stephensi. Environ Microbiol 13:911–921. doi:10.1111/j.1462-2920.2010.02395.x

    Article  CAS  PubMed  Google Scholar 

  19. Benda ND (2008) Detection and characterization of Kodamaea ohmeri associated with small hive beetle Aethina tumida infesting honey bee hives. J Apic Res 47:194–201. doi:10.3827/IBRA.1.47.3.07

    Article  CAS  Google Scholar 

  20. Gibson CM, Hunter MS (2005) Reconsideration of the role of yeasts associated with Chrysoperla green lacewings. Biol Control 32:57–64. doi:10.1016/j.biocontrol.2004.06.006

    Article  Google Scholar 

  21. Gibson CM, Hunter MS (2009) Negative fitness consequences and transmission dynamics of a heritable fungal symbiont of a parasitic wasp. Appl Environ Microbiol 75:3115–3119. doi:10.1128/AEM.00361-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rosa CA, Lachance MA, Silva JOC, Teixeira ACP, Marini MM, Antonini Y, Martins RP (2003) Yeast communities associated with stingless bees. FEMS Yeast Res 4:271–275. doi:10.1016/S1567-1356(03)00173-9

    Article  CAS  PubMed  Google Scholar 

  23. Torto B, Boucias DG, Arbogast RT, Tumlinson JH, Teal PEA (2007) Multitrophic interaction facilitates parasite-host relationship between an invasive beetle and the honey bee. Proc Natl Acad Sci U S A 104:8374–8378. doi:10.1073/pnas.0702813104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cappelli A, Ulissi U, Valzano M, Damiani C, Epis S, Gabrielli MG, Conti S, Polonelli L, Bandi C, Favia G, Ricci I (2014). A Wickerhamomyces anomalus killer strain in the malaria vector Anopheles stephensi. PLoS One. doi: 10.1371/journal.pone.0095988.

  25. Wang X, Chi Z, Yue L, Li J, Li M, Wu L (2007) A marine killer yeast against the pathogenic yeast strain in crab (Portunus trituberculatus) and an optimization of the toxin production. Microbiol Res 162:77–85. doi:10.1016/j.micres.2006.09.002

    Article  CAS  PubMed  Google Scholar 

  26. Reeves WK (2004) Oviposition by Aedes aegypti (Diptera: Culicidae) in relation to conspecific larvae infected with internal symbiotes. J Vector Ecol 29:159–163

    CAS  PubMed  Google Scholar 

  27. Asahina S (1964) Food material and feeding procedures for mosquito larvae. Bull World Health Organ 31:465–466

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sirot LK, Hardstone MC, Helinski MEH, Ribeiro JMC, Kimura M, Deewatthanawong P, Wolfner MF, Harrington LC (2011) Towards a semen proteome of the dengue vector mosquito: protein identification and potential functions. PLoS Negl Trop Dis 5:1–11. doi:10.1371/journal.pntd.0000989

    Article  Google Scholar 

  29. Mokany A, Shine R (2003) Biological warfare in the garden pond: tadpoles suppress the growth of mosquito larvae. Ecol Entomol 28:102–108. doi:10.1046/j.1365-2311.2003.00476.x

    Article  Google Scholar 

  30. Laird M (1988) The natural history of larval mosquito habitats. Academic, London

  31. Ayanbimpe GM, Eyiojo V, Ior CA (2012) Yeasts and yeast-like fungal contaminants of water used for domestic purposes in Jos, Nigeria. Microbiol Res 3:99–102. doi:10.4081/mr.2012.e24

    Google Scholar 

  32. Kurtzman CP, Fell JW, Boekhout T (2011) The yeasts: a taxonomic study, volume 3. Elsevier, Amsterdam

  33. Becnel JJ, Howell P (2010) Infections in mosquito cultures. MR4 methods in Anopheles research, 2nd edn., pp 42–51

    Google Scholar 

  34. Damiani C, Ricci I, Crotti E, Rossi P, Rizzi A, Scuppa P, Capone A, Ulissi U, Epis S, Genchi M, Sagnon N, Faye I, Kang A, Chouaia B, Whitehorn C, Moussa GW, Mandrioli M, Esposito F, Sacchi L, Bandi C, Daffonchio D, Favia G (2010) Mosquito-bacteria symbiosis: the case of Anopheles gambiae and Asaia. Microb Ecol 60:644–654. doi:10.1007/s00248-010-9704-8

    Article  PubMed  Google Scholar 

  35. Lindh JM, Borg-Karlson A-K, Faye I (2008) Transstadial and horizontal transfer of bacteria within a colony of Anopheles gambiae (Diptera: Culicidae) and oviposition response to bacteria-containing water. Acta Trop 107:242–250. doi:10.1016/j.actatropica.2008.06.008

    Article  CAS  PubMed  Google Scholar 

  36. Moll RM, Romoser WS, Modrzakowski MC, Moncayo AC, Lerdthusnee K (2001) Meconial peritrophic membranes and the fate of midgut bacteria during mosquito (Diptera: Culicidae) metamorphosis. J Med Entomol 38:29–32. doi:10.1603/0022-2585-38.1.29

    Article  CAS  PubMed  Google Scholar 

  37. Briones AM, Shililu J, Githure J, Novak R, Raskin L (2008) Thorsellia anophelis is the dominant bacterium in a Kenyan population of adult Anopheles gambiae mosquitoes. ISME J 2:74–82. doi:10.1038/ismej.2007.95

    Article  CAS  PubMed  Google Scholar 

  38. Pumpuni CB, Demaio J, Kent M, Davis JR, Beier JC (1996) Bacterial population dynamics in three anopheline species: the impact on Plasmodium sporogonic development. Am J Trop Med Hyg 54:214–8

    CAS  PubMed  Google Scholar 

  39. Doyle J, Doyle J (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  40. Dunn J (2008) Kalisz lab protocol for outcrossing rates estimation in the tribe Collinseae

  41. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    CAS  PubMed  Google Scholar 

  42. Yarrow D (2000) Methods for the isolation, maintenance and identification of yeasts. In: Kurtzman C, Fell J (eds) The yeasts, a taxonomic study, 4 revised and enlargedth edn. Elsevier, Amsterdam, pp 77–100

    Google Scholar 

  43. Vreulink J-M, Stone W, Botha A (2010) Effects of small increases in copper levels on culturable basidiomycetous yeasts in low-nutrient soils. J Appl Microbiol 109:1411–21. doi:10.1111/j.1365-2672.2010.04770.x

    Article  CAS  PubMed  Google Scholar 

  44. White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T (eds) PCR protocols: a guide to methods and applications. Academic, New York, pp 315–322

    Google Scholar 

  45. Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50:1351–1371

    Article  CAS  PubMed  Google Scholar 

  46. Hortal J, Borges PAV, Gaspar C (2006) Evaluating the performance of species richness estimators: sensitivity to sample grain size. J Anim Ecol 75:274–287. doi:10.1111/j.1365-2656.2006.01048.x

    Article  PubMed  Google Scholar 

  47. Colwell R (2013) EstimateS: Statistical estimation of species richness and shared species from samples

  48. Pielou EC (1977) Mathematical ecology. Wiley, New York

  49. Simpson E (1949) Measurement of diversity. Nature. doi: 10.1038/163688a0

  50. Saul N, Krockenberger M, Carter D (2008) Evidence of recombination in mixed-mating-type and alpha-only populations of Cryptococcus gattii sourced from single eucalyptus tree hollows. Eukaryot Cell 7:727–34. doi:10.1128/EC.00020-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Springer DJ, Chaturvedi V (2010) Projecting global occurrence of Cryptococcus gattii. Emerg Infect Dis 16:14–20. doi:10.3201/eid1601.090369

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yee D, Kesavaraju B, Juliano S (2004) Larval feeding behavior of three co-occurring species of container mosquitoes. J Vector Ecol 29:315–322

    PubMed  PubMed Central  Google Scholar 

  53. Moore MM, Strom MS (2003) Infection and mortality by the yeast Metschnikowia bicuspidata var. bicuspidata in chinook salmon fed live adult brine shrimp (Artemia franciscana). Aquaculture 220:43–57. doi:10.1016/S0044-8486(02)00271-5

    Article  Google Scholar 

  54. Brothers KM, Gratacap RL, Barker SE, Newman ZR, Norum A, Wheeler RT (2013) NADPH oxidase-driven phagocyte recruitment controls Candida albicans filamentous growth and prevents mortality. PLoS Pathog. doi: 10.1371/journal.ppat.1003634

  55. Fang J (2010) Ecology: a world without mosquitoes. Nature 466:432–4. doi:10.1038/466432a

    Article  CAS  PubMed  Google Scholar 

  56. Walter Reed Biosystematics Unit (2001) Systematic catalog of Culicidae. Smithsonian Institution, Washington, DC, USA. http://wrbu.org

  57. Gonzalez-Ceron L, Santillan F, Rodriguez MH, Mendez D, Hernandez-Avila JE (2003) Bacteria in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development. J Med Entomol 40:371–374. doi:10.1603/0022-2585-40.3.371

    Article  PubMed  Google Scholar 

  58. Straif SC, Mbogo CNM, Toure AM, Walker ED, Kaufman M, Toure YT, Beier JC (1998) Midgut bacteria in Anopheles gambiae and An. funestus (Diptera: Culicidae) from Kenya and Mali. J Med Entomol 35:222–226. doi:10.1093/jmedent/35.3.222

    Article  CAS  PubMed  Google Scholar 

  59. Harwood CG, Rao RP (2014) Host pathogen relations: exploring animal models for fungal pathogens. Pathogens 3:549–562. doi:10.3390/pathogens3030549

    Article  PubMed  PubMed Central  Google Scholar 

  60. Foster WA (1995) Mosquito sugar feeding and reproductive energetics. Annu Rev Entomol 40:443–474

    Article  CAS  PubMed  Google Scholar 

  61. Ngamskulrungroj P, Price J, Sorrell T, Perfect JR, Meyer W (2011) Cryptococcus gattii virulence composite: candidate genes revealed by microarray analysis of high and less virulent Vancouver Island outbreak strains. PLoS One. doi: 10.1371/journal.pone.0016076

  62. Chaturvedi V, Chaturvedi S (2011) Cryptococcus gattii: a resurgent fungal pathogen. Trends Microbiol 19:564–570. doi:10.1016/j.tim.2011.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Brothers KM, Newman ZR, Wheeler RT (2011) Live imaging of disseminated candidiasis in zebrafish reveals role of phagocyte oxidase in limiting filamentous growth. Eukaryot Cell 10:932–944. doi:10.1128/EC.05005-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Brothers KM, Wheeler RT (2012) Non-invasive imaging of disseminated candidiasis in zebrafish larvae. J Vis Exp 2–7. doi: 10.3791/4051

  65. Byrnes EJ, Li W, Lewit Y, Ma H, Voelz K, Ren P, Carter DA, Chaturvedi V, Bildfell RJ, May RC, Heitman J (2010) Emergence and pathogenicity of highly virulent Cryptococcus gattii genotypes in the northwest United States. PLoS Pathog 6:e1000850. doi:10.1371/journal.ppat.1000850

    Article  PubMed  PubMed Central  Google Scholar 

  66. Fraser JA, Giles SS, Wenink EC, Geunes-Boyer SG, Wright JR, Diezmann S, Allen A, Stajich JE, Dietrich FS, Perfect JR, Heitman J (2005) Same-sex mating and the origin of the Vancouver Island Cryptococcus gattii outbreak. Nature 437:1360–4. doi:10.1038/nature04220

    Article  CAS  PubMed  Google Scholar 

  67. Krockenberger MB, Malik R, Ngamskulrungroj P, Trilles L, Escandon P, Dowd S, Allen C, Himmelreich U, Canfield PJ, Sorrell TC, Meyer W (2010) Pathogenesis of pulmonary Cryptococcus gattii infection: a rat model. Mycopathologia 170:315–30. doi:10.1007/s11046-010-9328-z

    Article  PubMed  Google Scholar 

  68. Lionakis MS, Lim JK, Lee C-CR, Murphy PM (2011) Organ-specific innate immune responses in a mouse model of invasive candidiasis. J Innate Immun 3:180–199. doi:10.1159/000321157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rahman D, Mistry M, Thavaraj S, Naglik JR, Challacombe SJ (2012) Murine model of concurrent oral and vaginal Candida albicans colonisation. Methods Mol Biol 845:527–35. doi:10.1007/978-1-61779-539-8_38

    Article  CAS  PubMed  Google Scholar 

  70. Thompson GR, Wiederhold NP, Najvar LK, Bocanegra R, Kirkpatrick WR, Graybill JR, Patterson TF (2012) A murine model of Cryptococcus gattii meningoencephalitis. J Antimicrob Chemother 67:1432–8. doi:10.1093/jac/dks060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chandler JA, Eisen JA, Kopp A (2012) Yeast communities of diverse Drosophila species: comparison of two symbiont groups in the same hosts. Appl Environ Microbiol 78:7327–7336. doi:10.1128/AEM.01741-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank everyone that facilitated our mosquito sampling. The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at are those of the author and are not necessarily to be attributed to the NRF. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Botha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steyn, A., Roets, F. & Botha, A. Yeasts Associated with Culex pipiens and Culex theileri Mosquito Larvae and the Effect of Selected Yeast Strains on the Ontogeny of Culex pipiens . Microb Ecol 71, 747–760 (2016). https://doi.org/10.1007/s00248-015-0709-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0709-1

Keywords

Navigation