Skip to main content
Log in

The Diversity of Bacterial Communities Associated with Atlantic Cod Gadus morhua

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The spatial and temporal changes in the bacterial communities associated with the Atlantic cod Gadus morhua were investigated using terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S recombinant DNA (rDNA). Epidermal mucous was sampled from 366 cod caught in three harvest locations (Baltic, Icelandic, and North Seas) over three seasons (spring 2002, autumn 2002, and spring 2003), and an automated method for the high-throughput processing of environmental samples was developed using a Qiagen BioRobot. The analysis revealed that a diverse consortium of bacteria were found on fish; γ-proteobacteria and CytophagaFlavobacterBacteroides (CFB) species were dominant. T-RFLP peak profiles suggested that operational taxonomic units (OTUs) related to Photobacterium sp., Psychrobacter sp., and Bacteroides sp. were common to all sites in all three seasons, but there were intersite variations in community composition. Cod caught from different seas had distinct reproducible bacterial assemblages. Whereas communities from fish caught in the Baltic and Icelandic Seas were relatively stable over the three seasons, those from fish from the North Sea changed significantly over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Acinas, SG, Anton, J, Rodriguez-Valera, F (1999) Diversity of free-living and attached bacteria in offshore western Mediterranean waters as depicted by analysis of genes encoding16S rRNA. Appl Environ Microbiol 65:514–522

    PubMed  CAS  Google Scholar 

  2. Al Harbi, AH, Naim Uddin, M (2004) Seasonal variation in the intestinal bacterial flora of hybrid tilapia (Oreochromis niloticus × Oreochromis aureus) cultured in earthern ponds in Saudi Arabia. Aquaculture 229:37–44

    Article  Google Scholar 

  3. Altschul, SF, Gish, W, Miller, W, Myers, EW, Lipman, DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  4. Bano, N, Hollibaugh, JT (2002) Phylogenetic composition of bacterioplankton assemblages from the arctic ocean. Appl Environ Microbiol 68:505–518

    Article  PubMed  CAS  Google Scholar 

  5. Bjørkevoll, I, Olsen, RL, Skjerdal, OT (2003) Origin and spoilage potential of the microbiota dominating genus Psychrobacter in sterile rehydrated salt-cured and dried salt-cured cod (Gadus morhua). Int J Food Microbiol 84:175–187

    PubMed  Google Scholar 

  6. Budsberg, KJ, Wimpee, CF, Braddock, JF (2003) Isolation and identification of Photobacterium phosphoreum from an unexpected niche: migrating salmon. Appl Environ Microbiol 69:6938–6942

    Article  PubMed  CAS  Google Scholar 

  7. Cooksey, KE, Wigglesworth-Cooksey, B (1995) Adhesion of bacteria and diatoms to surfaces in the sea. Aquat Microb Ecol 9:87–96

    Article  Google Scholar 

  8. Cottrell, MT, Kirchman, DL (2000) Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Appl Environ Microbiol 66:5116–5122

    Article  PubMed  CAS  Google Scholar 

  9. Crouse-Eisnor, RA, Cone, DK, Odense, PH (1985) Studies on relations of bacteria with skin surface of Carassius auratus L. and Poecilia reticulata. J Fish Biol 27:395–402

    Article  Google Scholar 

  10. Crump, BC, Armbrust, EV, Baross, JA (1999) Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia river, its estuary, and the adjacent coastal ocean. Appl Environ Microbiol 65:3192–3204

    PubMed  CAS  Google Scholar 

  11. Dalgaard, P, Mejlholm, TJ, Christiansen, TJ, Huss, HH (1997) Importance of Photobacterium phosphoreum in relation to spoilage of modified atmosphere-packed fish products. Lett Appl Microbiol 24:373–378

    Article  Google Scholar 

  12. del Cerro, A, Marquez, I, Guijarro, JA (2002) Simultaneous Detection of Aeromonas salmonicida, Flavobacterium psychrophilum, and Yersinia ruckeri, three major fish pathogens, by multiplex PCR. Appl Environ Microbiol 68:5177–5180

    Article  PubMed  CAS  Google Scholar 

  13. DeLong, EF, Franks, DG, Alldredge, AL (1993) Phylogenetic diversity of aggregate-attached vs. free-living marine bacteria assemblages. Limnol Oceanogr 38:924–934

    Article  Google Scholar 

  14. Dunlap, PV (1985) Osmotic control of luminescence and growth in Photobacterium leiognathi from ponyfish light organs. Arch Microbiol 141:44–50

    Article  PubMed  CAS  Google Scholar 

  15. Dunlap, PV, Kita-Tsukamoto, K, Waterbury, JB, Callahan, SM (1995) Isolation and characterization of a visibly luminous variant of Vibrio fischeri strain ES114 from the sepiolid squid Euprymna scolopes. Arch Microbiol 164:194–202

    CAS  Google Scholar 

  16. Flemming, HC (2002) Biofouling in water systems—cases, causes and countermeasures. Appl Microbiol Biotechnol 59:629–640

    Article  PubMed  CAS  Google Scholar 

  17. Georgala, DL (1958) The bacterial flora of the skin of North Sea cod. J Gen Microbiol 18:84–91

    PubMed  CAS  Google Scholar 

  18. Gillan, DC, Speksnijder, AGCL, Zwart, G, De Ridder, C (1998) Genetic diversity of the biofilm covering Montacuta ferruginosa (Mollusca, Bivalvia) as evaluated by denaturing gradient gel electrophoresis analysis and cloning of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 64:3464–3472

    PubMed  CAS  Google Scholar 

  19. Giovannoni, SJ, Rappe, M (2000) Evolution, diversity and molecular ecology of marine prokaryotes. In: Kirchman DL (Ed.) Microbial ecology of the oceans. Wiley–Liss, New York, pp 47–84

    Google Scholar 

  20. Glöckner, FO, Fuchs, BM, Amann, R (1999) Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridisation. Appl Environ Microbiol 65:3721–3726

    PubMed  Google Scholar 

  21. Gonzalez, JM, Moran, MA (1997) Numerical dominance of a group of marine bacteria in the alpha-subclass of the class Proteobacteria in coastal seawater. Appl Environ Microbiol 63:4237–4242

    PubMed  CAS  Google Scholar 

  22. Hagi, T, Tanaka, D, Iwamura, Y, Hoshino, T (2004) Diversity and seasonal changes in lactic acid bacteria in the intestinal tract of cultured freshwater fish. Aquaculture 234:335–346

    Article  CAS  Google Scholar 

  23. Hagström, Å, Pommier, T, Rohwer, F, Simu, K, Stolte, W, Svensson, D, Zweifel, UL (2002) Use of ribosomal DNA for delineation of marine bacterioplankton species. Appl Environ Microbiol 68:3628–3633

    Article  PubMed  CAS  Google Scholar 

  24. Hansen, GH, Olafsen, JA (1999) Bacterial interactions in early life stages of marine cold water fish. Microb Ecol 38:1–26

    Article  PubMed  Google Scholar 

  25. Hentschel, U, Hopke, J, Horn, M, Friedrich, AB, Wagner, M, Hacker, J, Moore, BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440

    Article  PubMed  CAS  Google Scholar 

  26. Holben, WE, Williams, P, Saarinen, M, Särkilahti, LK, Apajalahti, JHA (2002) Phylogenetic analysis of intestinal microflora indicates a novel mycoplasma phylotype in farmed and wild salmon. Microb Ecol 44:175–185

    Article  PubMed  CAS  Google Scholar 

  27. Horsley, RW (1973) The bacterial flora of the Atlantic salmon (Salmo salar L.) in relations to its environment. J Appl Bacteriol 36:377–386

    PubMed  CAS  Google Scholar 

  28. Kirchman, DL (2002) The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100

    CAS  PubMed  Google Scholar 

  29. Kreader, CA (1996) Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl Environ Microbiol 62:1102–1106

    PubMed  CAS  Google Scholar 

  30. Lipp, EK, Jarrell, JL, Griffin, DW, Lukasik, J, Jacukiewicz, J, Rose, JB (2002) Preliminary evidence for fecal contamination on corals of the Florida Keys. Mar Pollut Bull 44:666–670

    Article  PubMed  CAS  Google Scholar 

  31. Liston, J (1957) The occurrence and distribution of bacterial types on flatfish. J Gen Microbiol 16:205–216

    PubMed  CAS  Google Scholar 

  32. Lock, MA (1994) Dynamics of particulate and dissolved organic matter over the substratum of water bodies. In: Wotton, RS (Ed.) Particulate and dissolved matter in aquatic systems. Lewis, Chelsea, MI, pp 137–160

    Google Scholar 

  33. Lyons, MM, Aas, P, Pakulski, JD, Van Waasbergen, L, Miller, RV, Mitchell, DL, Jeffrey, WH (1998) DNA damage induced by ultraviolet radiation in coral-reef communities. Mar Biol 130:161–182

    Article  Google Scholar 

  34. Maidak, BL, Olsen, GJ, Larsen, N, Overbeek, MJ, McCaughey, MJ, Woese, CR (1997) The RDP (Ribosomal Database Project). Nucleic Acids Res 25:109–111

    Article  PubMed  CAS  Google Scholar 

  35. Marchesi, JR, Sato, T, Weightman, AJ, Martin, TA, Fry, JC, Hiom, SJ, Dymock, D, Wade, WG (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799

    PubMed  CAS  Google Scholar 

  36. Mudarris, M, Austin, B (1988) Quantitative and qualitative studies of the bacterial microflora of turbot, Scophthalmus maximus L., gills. J Fish Biol 32:223–229

    Article  Google Scholar 

  37. Mullins, TD, Britschgi, TB, Krest, RL, Giovannoni, SJ (1995) Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities. Limnol Oceanogr 40:148–158

    Article  CAS  Google Scholar 

  38. Nieto, TP, Toranzo, AE, Barja, JL (1984) Comparison between the bacterial flora associated with fingerling rainbow trout cultured in two different hatcheries in the northwest of Spain. Aquaculture 42:193–206

    Article  Google Scholar 

  39. Nocker, A, Lepo, JE, Snyder, RA (2004) Influence of an oyster reef on development of the microbial heterotrophic community of an estuarine biofilm. Appl Environ Microbiol 70:6834–6845

    Article  PubMed  CAS  Google Scholar 

  40. O’Toole, R, Lundberg, S, Fredriksson, S, Jansson, A, Nilsson, B, Wolf-Watz, H (1999) The chemotactic response of Vibrio anguillarum to fish intestinal mucus is mediated by a combination of multiple mucus components. J Bacteriol 181:4308–4317

    PubMed  CAS  Google Scholar 

  41. Osborn, AM, Moore, ERB, Timmis, KN (2000) An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ Microbiol 2:39–50

    Article  PubMed  CAS  Google Scholar 

  42. Pinhassi, J, Hagström, A (2000) Seasonal succession in marine bacterioplankton. Aquat Microb Ecol 21:245–256

    Article  Google Scholar 

  43. Polz, MF, Harbison, C, Cavanaugh, CM (1999) Diversity and heterogeneity of epibiotic bacterial communities on the marine nematode Eubostrichus dianae. Appl Environ Microbiol 65:4271–4275

    PubMed  CAS  Google Scholar 

  44. Rehnstam, AS, Backman, S, Smith, DC, Azam, F, Hagström, A (1993) Blooms of sequence-specific culturable bacteria in the sea. FEMS Microbiol Lett 102:161–166

    Article  Google Scholar 

  45. Ruby, EG, Lee, KH (1998) The Vibrio fischeri-Euprymna scolopes light organ association: current ecological paradigms. Appl Environ Microbiol 64:805–812

    PubMed  CAS  Google Scholar 

  46. Sambrook, J, Manniatis, T, Fritsch, EF (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA

    Google Scholar 

  47. Smith, CJ, Danilowicz, BS, Clear, AK, Costello, FJ, Wilson, B, Meijer, WG (2005) T-Align, a web based tool for comparison of multiple terminal restriction fragment length polymorphism profiles. FEMS Microbiol Ecol 54:375–380

    Article  PubMed  CAS  Google Scholar 

  48. Sugita, H, Shibuya, K, Shimooka, H, Deguchi, Y (1996) Antibacterial abilities of intestinal bacteria in freshwater cultured fish. Aquaculture 145:195–203

    Article  Google Scholar 

  49. Thompson, JD, Gibson, TJ, Plewniak, F, Jeanmougin, F, Higgins, DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 22:4673–4680

    Article  Google Scholar 

  50. Van de Peer, Y, De Wachter, R (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570

    PubMed  Google Scholar 

  51. Van Der Maarel, MJEC, Artz, RRE, Haanstra, R, Forney, LJ (1998) Association of marine Archaea with the digestive tracts of two marine fish species. Appl Environ Microbiol 64:2894–2898

    PubMed  Google Scholar 

  52. Webster, NS, Wilson, KJ, Blackall, LL, Hill, RT (2001) Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67:434–444

    Article  PubMed  CAS  Google Scholar 

  53. Wotton, RS (2004) The essential role of exopolymers (EPS) in aquatic systems. In: Gibson, RN, Atkinson, RJA, Gordon, JDM (Eds.) Oceanography and marine biology: an annual review, vol. 42, pp 57–94

  54. Wotton, RS (2004) The ubiquity and many roles of exopolymers (EPS) in aquatic systems. Sci Mar 68:13–21

    Article  CAS  Google Scholar 

  55. Yager, PL, Connelly, TL, Mortazavi, BB, Wommack, KE, Bano, N, Bauer, J, Opsahl, S, Hollibaugh, JT (2001) Dynamic microbial response to an Arctic algal bloom at sub-zero temperatures. Limnol Oceanogr 44:1882–1893

    Article  Google Scholar 

Download references

Acknowledgment

This project is funded by the EU Commission within the fifth framework program, Quality of Life and Management of Living Resources (QLRT-2000-01697).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim G. Meijer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, B., Danilowicz, B.S. & Meijer, W.G. The Diversity of Bacterial Communities Associated with Atlantic Cod Gadus morhua . Microb Ecol 55, 425–434 (2008). https://doi.org/10.1007/s00248-007-9288-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-007-9288-0

Keywords

Navigation