Skip to main content

Advertisement

Log in

Basic science research in pediatric radiology — how to empower the leading edge of our field

  • Research Forum
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Basic science research aims to explore, understand and predict phenomena in the natural world. It spurs the discovery of fundamentally new principles and leads to new knowledge and new concepts. By comparison, applied research employs basic science knowledge toward practical applications. In the clinical realm, basic science research and applied research should be closely connected. Basic science discoveries can build the foundation for a broad range of practical applications and thereby bring major benefits to human health, education, environment and economy. This article explains how basic science research impacts our field, it describes examples of new research directions in pediatric imaging and it outlines current challenges that we need to overcome in order to enable the next groundbreaking discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Davis BD (2000) The scientist’s world. Microbiol Mol Biol Rev 64:1–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Ligon BL (2004) Penicillin: its discovery and early development. Sem Pediatr Infect Dis 15:52–57

    Article  Google Scholar 

  3. Andreae H (1973) The discoverer of X-rays and first Nobel prize winner for physics, Wilhelm Conrad Rontgen, died 50 years ago. Photographie 26:195–197

    CAS  Google Scholar 

  4. Best Practices in Transforming Research into Innovation: Creative Approaches to the Bayh-Dole Act. Hearing before the House Committee on Science, Space, and Technology, Subcommittee on Technology and Innovation. United States House of Representatives. 112th Cong., 2nd Sess. (2012). (Statement of Todd T. Sherer, PhD, CLP, Association of University Technology Managers)

  5. Fuchs VR, Sox HC Jr (2001) Physicians’ views of the relative importance of thirty medical innovations. Health Aff (Millwood) 20:30–42

    Article  CAS  Google Scholar 

  6. Daldrup-Link H, Gambhir SS (2013) Pediatric molecular imaging. In: Treves ST (ed) Pediatric nuclear medicine and molecular imaging, 4th edn. Springer, Heidelberg

    Google Scholar 

  7. Kiessling I, Bzyl J, Kiessling F (2011) Molecular ultrasound imaging and its potential for paediatric radiology. Pediatr Radiol 41:176–184

    Article  PubMed  Google Scholar 

  8. Lindner JR (2004) Microbubbles in medical imaging: current applications and future directions. Nat Rev Drug Discov 3:527–532

    Article  CAS  PubMed  Google Scholar 

  9. Willmann JK, Cheng Z, Davis C et al (2008) Targeted microbubbles for imaging tumor angiogenesis: assessment of whole-body biodistribution with dynamic micro-PET in mice. Radiology 249:212–219

    Article  PubMed Central  PubMed  Google Scholar 

  10. Willmann JK, Paulmurugan R, Chen K et al (2008) US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice. Radiology 246:508–518

    Article  PubMed  Google Scholar 

  11. Pamir MN, Ozduman K, Dincer A et al (2010) First intraoperative, shared-resource, ultrahigh-field 3-tesla magnetic resonance imaging system and its application in low-grade glioma resection. J Neurosurg 112:57–69

    Article  PubMed  Google Scholar 

  12. Jacobs J, Rohr A, Moeller F et al (2008) Evaluation of epileptogenic networks in children with tuberous sclerosis complex using EEG-fMRI. Epilepsia 49:816–825

    Article  PubMed  Google Scholar 

  13. Auboiroux V, Petrusca L, Viallon M et al (2012) Ultrasonography-based 2D motion-compensated HIFU sonication integrated with reference-free MR temperature monitoring: a feasibility study ex vivo. Phys Med Biol 57:N159–N171

    Article  PubMed  Google Scholar 

  14. Sung HY, Jung SE, Cho SH et al (2011) Long-term outcome of high-intensity focused ultrasound in advanced pancreatic cancer. Pancreas 40:1080–1086

    Article  PubMed  Google Scholar 

  15. Hu S, Balakrishnan A, Bok RA et al (2011) 13C-pyruvate imaging reveals alterations in glycolysis that precede c-Myc-induced tumor formation and regression. Cell Metab 14:131–142

    Article  CAS  PubMed  Google Scholar 

  16. Malloy CR, Merritt ME, Sherry AD (2011) Could 13C MRI assist clinical decision-making for patients with heart disease? NMR Biomed 24:973–979

    Article  PubMed Central  PubMed  Google Scholar 

  17. Drzezga A, Souvatzoglou M, Eiber M et al (2012) First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med 53:845–855

    Article  PubMed  Google Scholar 

  18. Samarin A, Burger C, Wollenweber SD et al (2012) PET/MR imaging of bone lesions—implications for PET quantification from imperfect attenuation correction. Eur J Nucl Med Mol Imaging 39:1154–1160

    Article  PubMed  Google Scholar 

  19. Schwenzer NF, Stegger L, Bisdas S et al (2012) Simultaneous PET/MR imaging in a human brain PET/MR system in 50 patients—current state of image quality. Eur J Radiol 81:3472–3478

    Article  CAS  PubMed  Google Scholar 

  20. Meier R, Krug C, Golovko D et al (2010) ICG-enhanced imaging of arthritis with an integrated optical imaging/X-ray system. Arthritis Rheum 62:2223–2227

  21. Meier R, Thuermel K, Moog P et al (2012) Detection of synovitis in the hands of patients with rheumatological disorders: diagnostic performance of optical imaging in comparison to MRI. Arthritis Rheum 64:2489–2498

    Article  PubMed  Google Scholar 

  22. James ML, Gambhir SS (2012) A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 92:897–965

    Article  CAS  PubMed  Google Scholar 

  23. Wang X, Chamberland DL, Xi G (2008) Noninvasive reflection mode photoacoustic imaging through infant skull toward imaging of neonatal brains. J Neurosci Methods 168:412–421

    Article  PubMed  Google Scholar 

  24. Khurana A, Nejadnik H, Chapelin F et al (2013) Ferumoxytol: a new, clinically applicable label for stem-cell tracking in arthritic joints with MRI. Nanomedicine 8:1969–1983

    Article  CAS  PubMed  Google Scholar 

  25. Castaneda RT, Boddington S, Henning TD et al (2011) Labeling human embryonic stem-cell-derived cardiomyocytes for tracking with MR imaging. Pediatr Radiol 41:1384–1392

    Article  PubMed  Google Scholar 

  26. Popert R (2011) High-intensity focussed ultrasound. Clin Oncol 23:114–116

    Article  CAS  Google Scholar 

  27. Sutton EJ, Henning TD, Pichler BJ et al (2008) Cell tracking with optical imaging. Eur Radiol 18:2021–2032

    Article  PubMed  Google Scholar 

  28. Liu JT, Mandella MJ, Ra H et al (2007) Miniature near-infrared dual-axes confocal microscope utilizing a two-dimensional microelectromechanical systems scanner. Opt Lett 32:256–258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Zhao Q, Jiang H, Cao Z et al (2011) A handheld fluorescence molecular tomography system for intraoperative optical imaging of tumor margins. Med Phys 38:5873–5878

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Swan M (2009) Emerging patient-driven health care models: an examination of health social networks, consumer personalized medicine and quantified self-tracking. Int J Environ Res Public Health 6:492–525

    Article  PubMed Central  PubMed  Google Scholar 

  31. Chenu O, Vuillerme N, Bucki M et al (2013) TexiCare: an innovative embedded device for pressure ulcer prevention. Preliminary results with a paraplegic volunteer. J Tissue Viability 22:83–90

    Article  PubMed  Google Scholar 

  32. Torrado-Carvajal A, Rodriguez-Sanchez MC, Rodriguez-Moreno A et al (2012) Changing communications within hospital and home health care. Conf Proc IEEE Eng Med Biol Soc 2012:6074–6077

    PubMed  Google Scholar 

  33. Ali SM, Aijazi T, Axelsson K et al (2011) Wireless remote monitoring of glucose using a functionalized ZnO nanowire arrays based sensor. Sensors 11:8485–8496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Lim KJ, Yoon DY, Yun EJ et al (2012) Characteristics and trends of radiology research: a survey of original articles published in AJR and Radiology between 2001 and 2010. Radiology 264:796–802

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike E. Daldrup-Link.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daldrup-Link, H.E. Basic science research in pediatric radiology — how to empower the leading edge of our field. Pediatr Radiol 44, 935–939 (2014). https://doi.org/10.1007/s00247-014-2958-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-014-2958-4

Keywords

Navigation