Skip to main content

Advertisement

Log in

The Action of Smooth Muscle Cell Potassium Channels in the Pathology of Pulmonary Arterial Hypertension

  • Review Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Many different types of potassium channels with various functions exist in pulmonary artery smooth muscle cells, contributing to many physiological actions and pathological conditions. The deep involvement of these channels in the onset and exacerbation of pulmonary arterial hypertension (PAH) also continues to be revealed. In 2013, KCNK3 (TASK1), which encodes a type of two-pore domain potassium channel, was shown to be a predisposing gene for PAH by genetic mutation, and it was added to the PAH classification at the Fifth World Symposium on Pulmonary Hypertension (Nice International Conference). Decreased expression and inhibited activity of voltage-gated potassium channels, particularly KCNA5 (Kv1.5), are also seen in PAH, regardless of the cause, and facilitation of pulmonary arterial contraction and vascular remodeling has been shown. The calcium-activated potassium channels seen in smooth muscle cells also change from BKca (Kca1.1) to IKca (Kca3.1) predominance in PAH due to transformation and have effects including the facilitation of smooth muscle cell migration, enhancement of proliferation, and inhibition of apoptosis. Elucidation of these roles for potassium channels in pulmonary vasoconstriction and remodeling may help bring new therapeutic strategies into view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hoeper MM, Bogaard HJ, Condliffe R, Frantz R, Khanna D, Kurzyna M, Langleben D, Manes A, Satoh T, Torres F, Wilkins MR, Badesch DB (2013) Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol 62:D42–D50

    Article  PubMed  Google Scholar 

  2. Abman SH (2016) New guidelines for managing pulmonary hypertension: what the pediatrician needs to know. Curr Opin Pediatr 28:597–606

    Article  PubMed  Google Scholar 

  3. Fritz JS, Smith KA (2016) The pulmonary hypertension consult: clinical and coding considerations. Chest. doi:10.1016/j.chest.2016.05.010

    Google Scholar 

  4. Kanwar MK, Thenappan T, Vachiéry JL (2016) Update in treatment options in pulmonary hypertension. J Heart Lung Transplant 35:695–703

    Article  PubMed  Google Scholar 

  5. Tuder RM, Abman SH, Braun T, Capron F, Stevens T, Thistlethwaite PA, Haworth SG (2009) Development and pathology of pulmonary hypertension. J Am Coll Cardiol 54:S3–S9

    Article  CAS  PubMed  Google Scholar 

  6. Guignabert C, Dorfmuller P (2013) Pathology and pathobiology of pulmonary hypertension. Semin Respir Crit Care Med 34:551–559

    Article  PubMed  Google Scholar 

  7. Rabinovitch M (2001) Pathobiology of pulmonary hypertension. Extracellular matrix. Clin Chest Med 22:433–449

    Article  CAS  PubMed  Google Scholar 

  8. Tuder RM (2009) Pathology of pulmonary arterial hypertension. Semin Respir Crit Care Med 30:376–385

    Article  PubMed  Google Scholar 

  9. Levy M, Eyries M, Szezepanski I, Ladouceur M, Nadaud S, Bonnet D, Soubrier F (2016) Genetic analyses in a cohort of children with pulmonary hypertension. Eur Respir. doi:10.1183/13993003.00211-2016

    Google Scholar 

  10. Tang H, Desai AA, Yuan JX (2016) Genetic insights into pulmonary arterial hypertension. Application of whole-exome sequencing to the study of pathogenic mechanisms. Am J Respir Crit Care Med 194:393–397

    Article  PubMed  Google Scholar 

  11. Pattathu J, Gorenflo M, Hilgendorff A, Koskenvuo JW, Apitz C, Hansmann G, Alastalo TP (2016) Genetic testing and blood biomarkers in paediatric pulmonary hypertension. Expert consensus statement on the diagnosis and treatment of paediatric pulmonary hypertension. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and DGPK. Heart 102(Suppl 2):ii36–ii41

    Article  CAS  PubMed  Google Scholar 

  12. Machado RD, Southgate L, Eichstaedt CA, Aldred MA, Austin ED, Best DH, Chung WK, Benjamin N, Elliott CG, Eyries M, Fischer C, Gräf S, Hinderhofer K, Humbert M, Keiles SB, Loyd JE, Morrell NW, Newman JH, Soubrier F, Trembath RC, Viales RR, Grünig E (2015) Pulmonary arterial hypertension: a current perspective on established and emerging molecular genetic defects. Hum Mutat 36:1113–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Austin ED, West J, Loyd JE, Hemnes AR (2016) Molecular medicine of pulmonary arterial hypertension: from population genetics to precision medicine and gene editing. Am J Respir Crit Care Med. doi:10.1164/rccm.201605-0905PP

    Google Scholar 

  14. Best DH, Austin ED, Chung WK, Elliott CG (2014) Genetics of pulmonary hypertension. Curr Opin Cardiol 29:520–527

    Article  PubMed  Google Scholar 

  15. Ma L, Roman-Campos D, Austin ED, Eyries M, Sampson KS, Soubrier F, Germain M, Trégouët DA, Borczuk A, Rosenzweig EB, Girerd B, Montani D, Humbert M, Loyd JE, Kass RS, Chung WK (2013) A novel channelopathy in pulmonary arterial hypertension. N Engl J Med 369:351–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, Gomez Sanchez MA, Krishna Kumar R, Landzberg M, Machado RF, Olschewski H, Robbins IM, Souza R (2013) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 62(25 Suppl):D34–D41

    Article  PubMed  Google Scholar 

  17. Harper RL, Reynolds AM, Bonder CS, Reynolds PN (2016) BMPR2 gene therapy for PAH acts via Smad and non-Smad signalling. Respirology 21:727–733

    Article  PubMed  Google Scholar 

  18. Feng F, Harper RL, Reynolds PN (2016) BMPR2 gene delivery reduces mutation-related PAH and counteracts TGF-β-mediated pulmonary cell signalling. Respirology 21:526–532

    Article  PubMed  Google Scholar 

  19. Xiong J (2015) BMPR2 spruces up the endothelium in pulmonary hypertension. Protein Cell 6:703–708

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bryant AJ, Robinson LJ, Moore CS, Blackwell TR, Gladson S, Penner NL, Burman A, McClellan LJ, Polosukhin VV, Tanjore H, McConaha ME, Gleaves LA, Talati MA, Hemnes AR, Fessel JP, Lawson WE, Blackwell TS, West JD (2015) Expression of mutant bone morphogenetic protein receptor II worsens pulmonary hypertension secondary to pulmonary fibrosis. Pulm Circ 5:681–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Archer SL, Wu XC, Thébaud B, Nsair A, Bonnet S, Tyrrell B, McMurtry MS, Hashimoto K, Harry G, Michelakis ED (2004) Preferential expression and function of voltage-gated, O2-sensitive K+ channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction: ionic diversity in smooth muscle cells. Circ Res 95:308–318

    Article  CAS  PubMed  Google Scholar 

  22. Wang J, Juhaszova M, Rubin LJ, Yuan XJ (1997) Hypoxia inhibits gene expression of voltage-gated K+ channel alpha subunits in pulmonary artery smooth muscle cells. J Clin Investig 100:2347–2353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pousada G, Baloira A, Vilariño C, Cifrian JM, Valverde D (2014) Novel mutations in BMPR2, ACVRL1 and KCNA5 genes and hemodynamic parameters in patients with pulmonary arterial hypertension. PLoS ONE 9:e100261

    Article  PubMed  PubMed Central  Google Scholar 

  24. Soubrier F, Chung WK, Machado R, Grünig E, Aldred M, Geraci M, Loyd JE, Elliott CG, Trembath RC, Newman JH, Humbert M (2013) Genetics and genomics of pulmonary arterial hypertension. J Am Coll Cardiol 62(25 Suppl):D13–D21

    Article  CAS  PubMed  Google Scholar 

  25. Park WS, Firth AL, Han J, Ko EA (2010) Patho-, physiological roles of voltage-dependent K+ channels in pulmonary arterial smooth muscle cells. J Smooth Muscle Res 46:89–105

    Article  PubMed  Google Scholar 

  26. Wipff J, Dieudé P, Guedj M, Ruiz B, Riemekasten G, Cracowski JL, Matucci-Cerinic M, Melchers I, Humbert M, Hachulla E, Airo P, Diot E, Hunzelmann N, Caramaschi P, Sibilia J, Valentini G, Tiev K, Girerd B, Mouthon L, Riccieri V, Carpentier PH, Distler J, Amoura Z, Tarner I, Degano B, Avouac J, Meyer O, Kahan A, Boileau C, Allanore Y (2010) Association of a KCNA5 gene polymorphism with systemic sclerosis-associated pulmonary arterial hypertension in the European Caucasian population. Arthritis Rheum 62:3093–3100

    Article  CAS  PubMed  Google Scholar 

  27. Burg ED, Remillard CV, Yuan JX (2008) Potassium channels in the regulation of pulmonary artery smooth muscle cell proliferation and apoptosis: pharmacotherapeutic implications. Br J Pharmacol 153(Suppl 1):S99–S111

    CAS  PubMed  Google Scholar 

  28. Sakamaki K, Ishii TM, Sakata T, Takemoto K, Takagi C, Takeuchi A, Morishita R, Takahashi H, Nozawa A, Shinoda H, Chiba K, Sugimoto H, Saito A, Tamate S, Satou Y, Jung SK, Matsuoka S, Koyamada K, Sawasaki T, Nagai T, Ueno N (2016) Dysregulation of a potassium channel, THIK-1, targeted by caspase-8 accelerates cell shrinkage. Biochim Biophys Acta 1863:2766–2783

    Article  CAS  PubMed  Google Scholar 

  29. Macchia A, Marchioli R, Tognoni G, Scarano M, Marfisi R, Tavazzi L, Rich S (2010) Systematic review of trials using vasodilators in pulmonary arterial hypertension: why a new approach is needed. Am Heart J 159:245–257

    Article  CAS  PubMed  Google Scholar 

  30. Galiè N, Palazzini M, Manes A (2010) Pulmonary arterial hypertension: from the kingdom of the near-dead to multiple clinical trial meta-analyses. Eur Heart J 31:2080–2086

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fox BD, Shimony A, Langleben D (2011) Meta-analysis of monotherapy versus combination therapy for pulmonary arterial hypertension. Am J Cardiol 108:1177–1182

    Article  CAS  PubMed  Google Scholar 

  32. Humbert M, Lau EM, Montani D, Jaïs X, Sitbon O, Simonneau G (2014) Advances in therapeutic interventions for patients with pulmonary arterial hypertension. Circulation 130:2189–2208

    Article  PubMed  Google Scholar 

  33. Bonnet S, Archer SL (2007) Potassium channel diversity in the pulmonary arteries and pulmonary veins: implications for regulation of the pulmonary vasculature in health and during pulmonary hypertension. Pharmacol Ther 115:56–69

    Article  CAS  PubMed  Google Scholar 

  34. González C, Baez-Nieto D, Valencia I, Oyarzún I, Rojas P, Naranjo D, Latorre R (2012) K(+) channels: function-structural overview. Compr Physiol 2:2087–2149

    PubMed  Google Scholar 

  35. Ward JP, McMurtry IF (2009) Mechanisms of hypoxic pulmonary vasoconstriction and their roles in pulmonary hypertension: new findings for an old problem. Curr Opin Pharmacol 9:287–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stenmark KR, Fagan KA, Frid MG (2006) Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res 99:675–691

    Article  CAS  PubMed  Google Scholar 

  37. Sommer N, Strielkov I, Pak O, Weissmann N (2016) Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction. Eur Respir J 47:288–303

    Article  CAS  PubMed  Google Scholar 

  38. Sommer N, Dietrich A, Schermuly RT, Ghofrani HA, Gudermann T, Schulz R, Seeger W, Grimminger F, Weissmann N (2008) Regulation of hypoxic pulmonary vasoconstriction: basic mechanisms. Eur Respir J 32:1639–1651

    Article  CAS  PubMed  Google Scholar 

  39. Kuhr FK, Smith KA, Song MY, Levitan I, Yuan JX (2012) New mechanisms of pulmonary arterial hypertension: role of Ca2+ signaling. Am J Physiol Heart Circ Physiol 302:H1546–H1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hayabuchi Y, Standen NB, Davies NW (2001) Angiotensin II inhibits and alters kinetics of voltage-gated K(+) channels of rat arterial smooth muscle. Am J Physiol Heart Circ Physiol 281:H2480–H2489

    CAS  PubMed  Google Scholar 

  41. Burg ED, Remillard CV, Yuan JX (2008) Potassium channels in the regulation of pulmonary artery smooth muscle cell proliferation and apoptosis: pharmacotherapeutic implications. Br J Pharmacol 153:S99–S111

    Article  CAS  PubMed  Google Scholar 

  42. Lang IM, Benza R (2012) Pulmonary hypertension: chapters of innovation and tribulation. Eur Heart J 33:961–968

    Article  PubMed  Google Scholar 

  43. Hayabuchi Y, Willars GB, Standen NB, Davies NW (2008) Insulin-like growth factor-I inhibits rat arterial K(ATP) channels through pI 3-kinase. Biochem Biophys Res Commun 374:742–746

    Article  CAS  PubMed  Google Scholar 

  44. Hayabuchi Y, Dart C, Standen NB (2001) Evidence for involvement of A-kinase anchoring protein in activation of rat arterial K(ATP) channels by protein kinase A. J Physiol 536:421–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sahara M, Sata M, Morita T, Hirata Y, Nagai R (2012) Nicorandil attenuates monocrotaline-induced vascular endothelial damage and pulmonary arterial hypertension. PLoS ONE 7:e33367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li J, Long C, Cui W, Wang H (2013) Iptakalim ameliorates monocrotaline-induced pulmonary arterial hypertension in rats. J Cardiovasc Pharmacol Ther 18:60–69

    Article  CAS  PubMed  Google Scholar 

  47. Jiang L, Zhou T, Liu H (2012) Combined effects of the ATP-sensitive potassium channel opener pinacidil and simvastatin on pulmonary vascular remodeling in rats with monocrotaline-induced pulmonary arterial hypertension. Pharmazie 67:547–552

    CAS  PubMed  Google Scholar 

  48. Zuo X, Zong F, Wang H, Wang Q, Xie W, Wang H (2011) Iptakalim, a novel ATP-sensitive potassium channel opener, inhibits pulmonary arterial smooth muscle cell proliferation by downregulation of PKC-α. J Biomed Res 25:392–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Remillard CV, Tigno DD, Platoshyn O, Burg ED, Brevnova EE, Conger D, Nicholson A, Rana BK, Channick RN, Rubin LJ, O’connor DT, Yuan JX (2007) Function of Kv1.5 channels and genetic variations of KCNA5 in patients with idiopathic pulmonary arterial hypertension. Am J Physiol Cell Physiol 292:C1837–C1853

    Article  CAS  PubMed  Google Scholar 

  50. Wang G, Knight L, Ji R, Lawrence P, Kanaan U, Li L, Das A, Cui B, Zou W, Penny DJ, Fan Y (2014) Early onset severe pulmonary arterial hypertension with ‘two-hit’ digenic mutations in both BMPR2 and KCNA5 genes. Int J Cardiol 177:e167–e169

    Article  PubMed  Google Scholar 

  51. Landsberg JW, Yuan JX (2004) Calcium and TRP channels in pulmonary vascular smooth muscle cell proliferation. News Physiol Sci 19:44–50

    CAS  PubMed  Google Scholar 

  52. Hayabuchi Y, Nakaya Y, Yasui S, Mawatari K, Mori K, Suzuki M, Kagami S (2006) Angiotensin II activates intermediate-conductance Ca2+-activated K+ channels in arterial smooth muscle cells. J Mol Cell Cardiol 41:972–979

    Article  CAS  PubMed  Google Scholar 

  53. Hayabuchi Y, Nakaya Y, Matsuoka S, Kuroda Y (1998) Endothelium-derived hyperpolarizing factor activates Ca2+-activated K+ channels in porcine coronary artery smooth muscle cells. J Cardiovasc Pharmacol 32:642–649

    Article  CAS  PubMed  Google Scholar 

  54. Beech DJ (2007) Ion channel switching and activation in smooth-muscle cells of occlusive vascular diseases. Biochem Soc Trans 35:890–894

    Article  CAS  PubMed  Google Scholar 

  55. Toyama K, Wulff H, Chandy KG, Azam P, Raman G, Saito T, Fujiwara Y, Mattson DL, Das S, Melvin JE, Pratt PF, Hatoum OA, Gutterman DD, Harder DR, Miura H (2008) The intermediate-conductance calcium-activated potassium channel Kca3.1 contributes to atherogenesis in mice and humans. J Clin Investig 118:3025–3037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yu Y, Sweeney M, Zhang S, Platoshyn O, Landsberg J, Rothman A, Yuan JX (2003) PDGF stimulates pulmonary vascular smooth muscle cell proliferation by upregulating TRPC6 expression. Am J Physiol Cell Physiol 284:C316–C330

    Article  CAS  PubMed  Google Scholar 

  57. Schwab A, Fabian A, Hanley PJ, Stock C (2012) Role of ion channels and transporters in cell migration. Physiol Rev 92:1865–1913

    Article  CAS  PubMed  Google Scholar 

  58. Hayabuchi Y, Sakata M, Ohnishi T, Kagami S (2012) Mechanical stretch and Intermediate-conductance Ca2+-activated K+ channels in arterial smooth muscle cells. In: Kamkin A, Lozinsky I (eds) Mechanically gated channels and their regulation, Mechanosensitivity in cells and tissues, vol 6. Springer, Dordrecht, pp 159–188

  59. Hayabuchi Y, Nakaya Y, Mawatari K, Inoue M, Sakata M, Kagami S (2011) Cell membrane stretch activates intermediate-conductance Ca2+-activated K+ channels in arterial smooth muscle cells. Heart Vessels 26:91–100

    Article  PubMed  Google Scholar 

  60. Geraci MW, Moore M, Gesell T, Yeager ME, Alger L, Golpon H, Gao B, Loyd JE, Tuder RM, Voelkel NF (2001) Gene expression patterns in the lungs of patients with primary pulmonary hypertension: a gene microarray analysis. Circ Res 88:555–562

    Article  CAS  PubMed  Google Scholar 

  61. Michelakis ED, McMurtry MS, Wu XC, Dyck JR, Moudgil R, Hopkins TA, Lopaschuk GD, Puttagunta L, Waite R, Archer SL (2002) Dichloroacetate, a metabolic modulator, prevents and reverses chronic hypoxic pulmonary hypertension in rats: role of increased expression and activity of voltage-gated potassium channels. Circulation 105:244–250

    Article  CAS  PubMed  Google Scholar 

  62. Remillard CV, Yuan JX (2004) Activation of K + channels: an essential pathway in programmed cell death. Am J Physiol Lung Cell Mol Physiol 286:L49–L67

    Article  CAS  PubMed  Google Scholar 

  63. Fan Z, Liu B, Zhang S, Liu H, Li Y, Wang D, Liu Y, Li J, Wang N, Liu Y, Zhang B (2015) YM155, a selective survivin inhibitor, reverses chronic hypoxic pulmonary hypertension in rats via upregulating voltage-gated potassium channels. Clin Exp Hypertens 37:381–387

    Article  CAS  PubMed  Google Scholar 

  64. Wulff H, Castle NA (2010) Therapeutic potential of Kca3.1 blockers: recent advances and promising trends. Expert Rev Clin Pharmacol 3:385–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunobu Hayabuchi.

Ethics declarations

Conflict of interest

None.

Additional information

Parts of this article were published in Japanese as a review in Pediatric Cardiology and Cardiac Surgery, at the invitation of its Editorial Board.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayabuchi, Y. The Action of Smooth Muscle Cell Potassium Channels in the Pathology of Pulmonary Arterial Hypertension. Pediatr Cardiol 38, 1–14 (2017). https://doi.org/10.1007/s00246-016-1491-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-016-1491-7

Keywords

Navigation