Skip to main content
Log in

Existence Results for Fractional p(x, .)-Laplacian Problem Via the Nehari Manifold Approach

  • Published:
Applied Mathematics & Optimization Submit manuscript

A Correction to this article was published on 17 October 2020

This article has been updated

Abstract

In the present paper, we study the existence of two non-negative solutions for a class of fractional p(x, .)-Laplacian problems with non-negative weight functions. The main tool is the Nehari manifold approach. Moreover, under some suitable assumptions, continuous and compact embeddings results are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Afrouzi, G.A., Rasouli, S.H.: The Nehari manifold for a class of concave–convex elliptic systems involving the \(p\)-Laplacian and nonlinear boundary condition. Nonlinear Anal. 73, 3390–3401 (2010)

    Article  MathSciNet  Google Scholar 

  2. Ali, K.B., Hsini, M., Kefi, K., Chung, N.T.: On a nonlocal fractional \(p(.,)\)-laplacian problem with competing nonlinearities. Complex Anal. Oper. Theory 13, 1377–1399 (2018). https://doi.org/10.1007/s11785-018-00885-9

    Article  MathSciNet  MATH  Google Scholar 

  3. Antontsev, S.N., Shmarev, S.I.: A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions. Nonlin. Anal. 60, 515–545 (2005)

    Article  MathSciNet  Google Scholar 

  4. Aydin, I.: Weighted variable sobolev spaces and capacity. J. Funct. Spaces Appl. 12, 17 (2012). https://doi.org/10.1155/2012/132690

    Article  MathSciNet  MATH  Google Scholar 

  5. Azroul, E., Shimi, M.: Nonlocal eigenvalue problems with variable exponent. Moroccan J. Pure Appl. Anal 4(1), 46–61 (2018)

    Article  Google Scholar 

  6. Azroul, E., Boumazourh, A.: On a class of fractional systems with nonstandard growth conditions. J. Pseudo-Differ. Oper. Appl. (2019). https://doi.org/10.1007/s11868-019-00310-5

  7. Azroul, E., Benkirane, A., Shimi, M., Srati, M.: On a class of fractional \(p(x)\)-Kirchhoff type problems. Appl. Anal. (2019). https://doi.org/10.1080/00036811.2019.1603372

  8. Azroul, E., Benkirane, A., Srati, M.: Three solutions for Kirchhoff problem involving the nonlocal fractional \(p\)-Laplacian. Adv. Oper. Theory (2019). https://doi.org/10.15352/AOT.1901-1464

  9. Azroul, E., Benkirane, A., Shimi, M.: Eigenvalue problems involving the fractional \(p(x)\)-Laplacian operator. Adv. Oper. Theory 4(2), 539–555 (2019). https://doi.org/10.15352/aot.1809-1420

    Article  MathSciNet  MATH  Google Scholar 

  10. Azroul, E., Benkirane, A., Srati, M.: Existence of solutions for a nonlocal type problem in fractional Orlicz Sobolev spaces. Adv. Oper. Theory (2020). https://doi.org/10.1007/s43036-020-00042-0

  11. Azroul, E., Benkirane, A., Srati, M.: Nonlocal eigenvalue type problem in fractional Orlicz-Sobolev space. Adv. Oper. Theory (2020). https://doi.org/10.1007/s43036-020-00067-5

  12. Azroul, E., Benkirane, A., Shimi, M.: Principle, Ekeland’s Variational, for the Fractional \(p(x)\)-Laplacian Operator, Recent Advances in Modeling, Analysis and Systems Control: Theoretical Aspects and Applications. Studies in Systems Decision and Control. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-26149-812

    Book  MATH  Google Scholar 

  13. Bahrouni, A., Rădulescu, V.: On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discrete Contin. Dyn. Syst. 11, 379–389 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Brown, K.J., Zhang, Y.: The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function. J. Differ. Equ. 193, 481–499 (2003)

    Article  MathSciNet  Google Scholar 

  15. Bucur, C., Valdinoci, E.: Non Local Diffusion and Application. Lecture Notes of the Unione Matematica Italiana. Springer, Cham (2016)

    Book  Google Scholar 

  16. Caffarelli, L.: Nonlocal diffusions, drifts and games. In: Equations, N.P.D. (ed.) Abel Symposia 7, pp. 37–52. Springer, Berlin (2012)

    Google Scholar 

  17. Carbotti, A., Dipierro, S., Valdinoci, E.: Local Density of Solutions to Fractional Equations. De Gruyter Studies in Mathematics, Berlin (2019). https://doi.org/10.1515/9783110664355

    Book  MATH  Google Scholar 

  18. Chen, W., Deng, S.: The Nehari manifold for non-local elliptic operators involving concave–convex nonlinearities. Z. Angew. Math. Phys. 66, 1387–1400 (2015). https://doi.org/10.1007/s00033-014-0486-6

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, W., Deng, S.: The Nehari manifold for a fractional p-Laplacian system involving concave–convex nonlinearities. Nonlinear Anal. 27, 80–92 (2016)

    Article  MathSciNet  Google Scholar 

  20. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image processing. SIAM J. Appl. Math. 66, 1383–1406 (2006)

    Article  MathSciNet  Google Scholar 

  21. Chung, N.T., Toan, H.Q.: On a class of fractional Laplacian problems with variable exponents and indefinite weights. Collectanea Mathematica 71, 223–237 (2019). https://doi.org/10.1007/s13348-019-00254-5

    Article  MathSciNet  MATH  Google Scholar 

  22. Diening, L., Hästö, P.: Muckenhoupt weights in variable exponent spaces. (2008). http://www.helsinki.fi/pharjule/varsob/publications.shtml

  23. Edmunds, D., Rakosnik, J.: Sobolev embeddings with variable exponent. Studia Math. 143(3), 267–293 (2000)

    Article  MathSciNet  Google Scholar 

  24. Fan, X.L., Zhao, D.: On the Spaces \(L^{p(x)}(\Omega )\) and \(W^{m, p(x)}(\Omega )\). J. Math. Anal. Appl. 263, 424–446 (2001)

    Article  MathSciNet  Google Scholar 

  25. Kaufmann, U., Rossi, J.D., Vidal, R.: Fractional Sobolev spaces with variable exponents and fractional \(p(x)\)-Laplacians. Electr. J. Qual. Theory Differ. Equ. 76, 1–10 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Klafter, M.J.: The restaurant at the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, 161–208 (2004)

    Article  MathSciNet  Google Scholar 

  27. Kováčik, O., Rákosník, J.: On spaces \(L^{p(x)}(\Omega )\) and \(W^{m, p(x)}(\Omega )\). Czechoslovak Math. J. 41(4), 592–618 (1991)

    Article  MathSciNet  Google Scholar 

  28. Kwasnicki, M.: Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal. 20(1), 7–51 (2017). https://doi.org/10.1515/fca-2017-0002

    Article  MathSciNet  MATH  Google Scholar 

  29. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)

    Article  MathSciNet  Google Scholar 

  30. Nehari, Z.: On a class of nonlinear second-order differential equations. Trans. Am. Math. Soc. 95, 101–123 (1960)

    Article  MathSciNet  Google Scholar 

  31. Rasouli, S.H.: On a PDE involving the variable exponent operator with nonlinear boundary conditions. Mediterr. J. Math 12(3), 821–837 (2015). https://doi.org/10.1007/s00009-014-0424-z

    Article  MathSciNet  MATH  Google Scholar 

  32. Ruzicka, M.: Electrorheological Fluids: Modeling and Mathematical Teory. Lecture Notes in Mathematics. Springer, Berlin (1996)

    Google Scholar 

  33. Saiedinezhad, S., Ghaemi, M.B.: The fibering map approach to a quasilinear degenerate \(p(x)\)-Laplacian equation. Bull. Iran. Math. Soc. 41(6), 1477–1492 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Servadei, R., Valdinoci, E.: Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389(2), 887–898 (2012)

    Article  MathSciNet  Google Scholar 

  35. Servadei, R., Valdinoci, E.: Lewy–Stampacchia type estimates for variational inequalities driven by (non)local operators. Rev. Mat. Iberoam. 29(3), 1091–1126 (2013). https://doi.org/10.4171/rmi/750

    Article  MathSciNet  MATH  Google Scholar 

  36. Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discrete Contin. Dyn. Syst. 33(5), 2105–2137 (2013)

    Article  MathSciNet  Google Scholar 

  37. Servadei, R., Valdinoci, E.: Weak and viscosity solutions of the fractional Laplace equation. Publ. Mat. 58, 133–154 (2014)

    Article  MathSciNet  Google Scholar 

  38. Sire, Y., Valdinoci, E.: Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result. J. Funct. Anal. 256(6), 1842–1864 (2009)

    Article  MathSciNet  Google Scholar 

  39. Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR. Izv. 9, 33–66 (1987)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referee for their suggestions and helpful comments which have improved the presentation of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azroul, E., Benkirane, A., Boumazourh, A. et al. Existence Results for Fractional p(x, .)-Laplacian Problem Via the Nehari Manifold Approach. Appl Math Optim 84, 1527–1547 (2021). https://doi.org/10.1007/s00245-020-09686-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-020-09686-z

Keywords

Mathematics Subject Classification

Navigation