Skip to main content
Log in

On a class of fractional Laplacian problems with variable exponents and indefinite weights

  • Published:
Collectanea Mathematica Aims and scope Submit manuscript

Abstract

Let \(\Omega \subset {\mathbb {R}}^N, N\ge 2\), be a bounded smooth domain. In this paper, we consider a class of fractional Laplacian problems of the form

$$\begin{aligned} \left\{ \begin{array}{ll} (\Delta )^s_{p_1(x,.)}u(x)+(\Delta )^s_{p_2(x,.)}u(x) + |u|^{q(x)-2}u = \lambda V_1(x)|u(x)|^{r_1(x)-2}u(x) \\ \qquad - \mu V_2(x)|u(x)|^{r_2(x)-2}u(x) \hbox { in }\Omega , \\ u(x) = 0 \; \hbox { in } \partial \Omega , \end{array} \right. \end{aligned}$$

where \((\Delta )^s_{p_i(.,.)} (0<s<1), i=1,2\), are the fractional \(p_i(.,.)\)-Laplacians, \(p_i\in C({\overline{\Omega }} \times {\overline{\Omega }}), q, r_i\in C({\overline{\Omega }}), i=1,2\) while \(\lambda , \mu \) are two positive parameters, \(V_1, V_2\) are weight functions in generalized Lebesgue spaces \(L^{\alpha _1(.)}(\Omega )\) and \(L^{\alpha _2(.)}(\Omega )\) respectively such that \(V_1\) may change sign in \(\Omega \) and \(V_2(x)\ge 0\) for all \(x\in \Omega \). Using variational techniques and Ekeland’s variational principle, we establish some existence results for the problem in an appropriate space of functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali, K.B., Hsini, M., Kefi, K., Chung, N.T.: On a nonlocal fractional \(p(., .)\)-Laplacian problem with competing nonlinearities. Complex Anal. Oper. Theory. https://doi.org/10.1007/s11785-018-00885-9

  2. Allaoui, M., Darhouche, O.: Existence results for a class of nonlocal problems involving the \((p_1(x), p_2(x))\)-Laplace operator. Complex Var. Elliptic Equ. 63(1), 76–89 (2018)

    Article  MathSciNet  Google Scholar 

  3. Autuori, G., Fiscella, A., Pucci, P.: Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity. Nonlinear Anal. (TMA) 125, 699–714 (2015)

    Article  MathSciNet  Google Scholar 

  4. Azroul, E., Benkirane, A., Shimi, M.: Eigenvalue problems involving the fractional \(p(x)\)-Laplacian operator. Adv. Oper. Theory 4(2), 539–555 (2019)

    Article  MathSciNet  Google Scholar 

  5. Bahrouni, A., Radulescu, V.D.: On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discrete Contin. Dyn. Syst. Ser S 11(3), 379–389 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Bahrouni, A.: Comparison and sub-supersolution principles for the fractional \(p(x)\)-Laplacian. J. Math. Anal. Appl. 458, 1363–1372 (2018)

    Article  MathSciNet  Google Scholar 

  7. Bisci, G.M., Radulescu, D.V., Servadei, R.: Variational Methods for Nonlocal Fractional Problems, Encyclopedia of Mathematics and Its Applications, vol. 162. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  8. Bonanno, G., Chinni, A.: Existence and multiplicity of weak solutions for elliptic Dirichlet problems with variable exponent. J. Math. Anal. Appl. 418, 812–827 (2014)

    Article  MathSciNet  Google Scholar 

  9. Bouslimi, M., Kefi, K.: Existence of solution for an indefinite weight quasilinear problem with variable exponent. Complex Var. Elliptic Equ. 58, 1655–1666 (2013)

    Article  MathSciNet  Google Scholar 

  10. Chung, N.T.: Multiple solutions for a class of \(p(x)\)-Laplacian problems involving concave–convex nonlinearities. Electron. J. Qual. Theory Differ. Equ. 2013(26), 1–17 (2013)

    Article  MathSciNet  Google Scholar 

  11. Chung, N.T.: Some remarks on a class of \(p(x)\)-Laplacian Robin eigenvalue problems. Mediterr. J. Math. 15(4), 147 (2018)

    Article  MathSciNet  Google Scholar 

  12. Diening, L., Harjulehto, P., Hasto, P., Ruzicka, M.: Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes, vol. 2017. Springer, Berlin (2011)

    Book  Google Scholar 

  13. Edmunds, D., Rakosnik, J.: Sobolev embeddings with variable exponent. Stud. Math. 143, 267–293 (2000)

    Article  MathSciNet  Google Scholar 

  14. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  Google Scholar 

  15. Fan, X.L., Zhao, D.: On the spaces \( L_{p(x)}(\Omega )\) and \(W^{k, m(x)}(\Omega )\). J. Math. Anal. Appl. 263(2), 424–446 (2001)

    Article  MathSciNet  Google Scholar 

  16. Fan, X.L., Shen, J., Zhao, D.: Sobolev embedding theorems for spaces \(W^{k, p(x)}(\Omega )\). J. Math. Anal. Appl. 262, 749–760 (2001)

    Article  MathSciNet  Google Scholar 

  17. Kaufmann, U., Rossi, J.D., Vidal, R.: Fractional Sobolev spaces with variable exponents and \(p(x)\)-Laplacian. Electron. J. Qual. Theory Differ. Equ. 2017(76), 1–10 (2017)

    Article  MathSciNet  Google Scholar 

  18. Kefi, K.: \(p(x)\)-Laplacian with indefinite weight. Proc. Am. Math. Soc. 139(12), 4351–4360 (2011)

    Article  MathSciNet  Google Scholar 

  19. Massar, M.: Existence of multiple solutions for a class of nonhomogeneous problems with critical growth. Electron. J. Qual. Theory Differ. Equ. 22, 1–18 (2017)

    Article  MathSciNet  Google Scholar 

  20. Mihailescu, M.: On a class of nonlinear problems involving a \(p(x)\)-Laplace type operator. Czechoslov. Math. J. 58(133), 155–172 (2008)

    Article  MathSciNet  Google Scholar 

  21. Mihailescu, M., Radulescu, V.: Continuous spectrum for a class of nonhomogeneous differential operators. Manuscr. Math. 125, 157–167 (2008)

    Article  MathSciNet  Google Scholar 

  22. Mihailescu, M., Radulescu, V.: Concentration phenomena in nonlinear eigenvalue problems with variable exponents and sign-changing potential. J. d’Analyse Math. 111(1), 267–287 (2010)

    Article  MathSciNet  Google Scholar 

  23. Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, vol. 1034. Springer, Berlin (1983)

    Book  Google Scholar 

  24. Nyamoradi, N., Chung, N.T.: Existence of solutions to nonlocal Kirchhoff equations of elliptic type via genus theory. Electron. J. Differ. Equ. 2014(86), 1–12 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Nyamoradi, N., Zaidan, L.: Existence and multiplicity of solutions for fractional \(p\)-Laplacian Schrödinger–Kirchhoff type equations. Complex Var. Elliptic Equ. 63(3), 346–359 (2018)

    Article  MathSciNet  Google Scholar 

  26. Pezzo, L.M.D., Rossi, J.D.: Trace for fractional Sobolev spaces with variables exponents. Adv. Oper. Theory 2(4), 435–446 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Radulescu, V.: Nonlinear elliptic equations with variable exponent: old and new. Nonlinear Anal. (TMA) 121, 336–369 (2015)

    Article  MathSciNet  Google Scholar 

  28. Struwe, M.: Variational Methods, vol. 34, 4th edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  29. Xiang, M., Zhang, B., Ferrara, M.: Existence of solutions for Kirchhoff type problem involving the non-local fractional \(p\)-Laplacian. J. Math. Anal. Appl. 424(2), 1021–1041 (2015)

    Article  MathSciNet  Google Scholar 

  30. Xiang, M., Zhang, B., Yang, D.: Multiplicity results for variable-order fractional Laplacian equations with variable growth. Nonlinear Anal. (TMA) 178, 190–204 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) (Grant N.101.02.2017.04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Thanh Chung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, N.T., Toan, H.Q. On a class of fractional Laplacian problems with variable exponents and indefinite weights. Collect. Math. 71, 223–237 (2020). https://doi.org/10.1007/s13348-019-00254-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13348-019-00254-5

Keywords

Mathematics Subject Classification

Navigation