Skip to main content
Log in

An Iterated Projection Approach to Variational Problems Under Generalized Convexity Constraints

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

The principal-agent problem in economics leads to variational problems subject to global constraints of b-convexity on the admissible functions, capturing the so-called incentive-compatibility constraints. Typical examples are minimization problems subject to a convexity constraint. In a recent pathbreaking article, Figalli et al. (J Econ Theory 146(2):454–478, 2011) identified conditions which ensure convexity of the principal-agent problem and thus raised hope on the development of numerical methods. We consider special instances of projections problems over b-convex functions and show how they can be solved numerically using Dykstra’s iterated projection algorithm to handle the b-convexity constraint in the framework of (Figalli et al. in J Econ Theory 146(2):454–478, 2011). Our method also turns out to be simple for convex envelope computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aguilera, N.E., Morin, P.: Approximating optimization problems over convex functions. Numer. Math. 111(1), 1–34 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bauschke, H.H., Combettes, P.L.: A Dykstra-like algorithm for two monotone operators. Pac. J. Optim. 4(3), 383–391 (2008)

    MATH  MathSciNet  Google Scholar 

  3. Bauschke, H.H., Lewis, A.S.: Dykstra’s algorithm with Bregman projections: a convergence proof. Optimization 48(4), 409–427 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bonnans, J.F., Gilbert, J.C., Lemaréchal, C., Sagastizábal, C.A.: Numerical Optimization. Theoretical and Practical Aspects, 2nd edn. Universitext, Springer, Berlin (2006)

    MATH  Google Scholar 

  5. Boyle, J.P., Dykstra, R.L.: A method for finding projections onto the intersection of convex sets in Hilbert spaces. In: Advances in Order Restricted Statistical Inference (Iowa City, Iowa, 1985). Lecture Notes in Statistics, vol 37, pp 28–47. Springer, Berlin, 1986

  6. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44(4), 375–417 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brock, F., Ferone, V., Kawohl, B.: A symmetry problem in the calculus of variations. Calc. Var. Part. Differ. Equ. 4(6), 593–599 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Buttazzo, G., Ferone, V., Kawohl, B.: Minimum problems over sets of concave functions and related questions. Math. Nachr. 173, 71–89 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Buttazzo, G., Guasoni, P.: Shape optimization problems over classes of convex domains. J. Convex Anal. 4(2), 343–351 (1997)

    MATH  MathSciNet  Google Scholar 

  10. Carlier, G.: A general existence result for the principal-agent problem with adverse selection. J. Math. Econ. 35(1), 129–150 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Carlier, G.: Calculus of variations with convexity constraint. J. Nonlinear Convex Anal. 3(2), 125–143 (2002)

    MATH  MathSciNet  Google Scholar 

  12. Carlier, G., Galichon, A.: Exponential convergence for a convexifying equation. ESAIM Control Optim. Calc. Var. 18(3), 611–620 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Carlier, G., Lachand-Robert, T.: Regularity of solutions for some variational problems subject to a convexity constraint. Commun. Pure Appl. Math. 54(5), 583–594 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Carlier, G., Lachand-Robert, T., Maury, B.: A numerical approach to variational problems subject to convexity constraint. Numer. Math. 88(2), 299–318 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Choné, P., Le Meur, H.V.J.: Non-convergence result for conformal approximation of variational problems subject to a convexity constraint. Numer. Funct. Anal. Optim. 22(5–6), 529–547 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Combettes, P.L.: Iterative construction of the resolvent of a sum of maximal monotone operators. J. Convex Anal. 16(3–4), 727–748 (2009)

    MATH  MathSciNet  Google Scholar 

  17. Dykstra, R.L.: An algorithm for restricted least squares regression. J. Am. Stat. Assoc. 78(384), 837–842 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ekeland, I., Moreno-Bromberg, S.: An algorithm for computing solutions of variational problems with global convexity constraints. Numer. Math. 115(1), 45–69 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Figalli, A., Kim, Y.-H., McCann, R.J.: When is multidimensional screening a convex program? J. Econ. Theory 146(2), 454–478 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lachand-Robert, T., Peletier, M.A.: An example of non-convex minimization and an application to Newton’s problem of the body of least resistance. Ann. Inst. H. Poincaré Anal. Non Linéaire 18(2), 179–198 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lamboley, J., Novruzi, A., Pierre, M.: Regularity and singularities of optimal convex shapes in the plane. Arch. Ration. Mech. Anal. 205(1), 311–343 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lions, P.-L.: Identification du cône dual des fonctions convexes et applications. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics 326(12), 1385–1390 (1998)

    Article  MATH  Google Scholar 

  23. Loeper, G.: On the regularity of solutions of optimal transportation problems. Acta Math. 202(2), 241–283 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ma, X.-N., Trudinger, N.S., Wang, X.-J.: Regularity of potential functions of the optimal transportation problem. Arch. Ration. Mech. Anal. 177(2), 151–183 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Mérigot, Q., Oudet, É.: Handling convexity-like constraints in variational problems. SIAM J. Numer. Anal. 52(5), 2466–2487 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mirebeau, J.-M.: Adaptive, anisotropic and hierarchical cones of discrete convex functions. arXiv preprint arXiv:1402.1561, to appear in Num. Math., 2014

  27. Oberman, A.M.: The convex envelope is the solution of a nonlinear obstacle problem. Proc. Am. Math. Soc. 135(6), 1689–1694 (2007). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  28. Oberman, A.M.: Computing the convex envelope using a nonlinear partial differential equation. Math. Models Methods Appl. Sci. 18(5), 759–780 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Oberman, A.M.: A numerical method for variational problems with convexity constraints. SIAM J. Sci. Comput. 35(1), A378–A396 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  30. Rochet, J.-C., Choné, P:. Ironing, sweeping, and multidimensional screening. Econometrica, pp. 783–826, (1998)

  31. Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series, vol. 28. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  32. Vese, L.: A method to convexify functions via curve evolution. Commun. Part. Differ. Equ. 24(9–10), 1573–1591 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors benefited from the hospitality of the Fields Institute (Toronto, Canada), where part of the present research was conducted during the Thematic Semester on Variational Problems in Physics, Economics and Geometry. They gratefully acknowledge support from the ANR, through the projects ISOTACE (ANR-12-MONU-0013), OPTIFORM (ANR-12-BS01-0007) and from INRIA through the “action exploratoire” MOKAPLAN and wish to thank J.-D. Benamou for stimulating discussions. G.C. gratefully acknowledges the hospitality of the Mathematics and Statistics Department at UVIC (Victoria, Canada) and support from the CNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Carlier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carlier, G., Dupuis, X. An Iterated Projection Approach to Variational Problems Under Generalized Convexity Constraints. Appl Math Optim 76, 565–592 (2017). https://doi.org/10.1007/s00245-016-9361-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-016-9361-5

Keywords

Mathematics Subject Classification

Navigation