Skip to main content
Log in

A Global Solution Curve for a Class of Free Boundary Value Problems Arising in Plasma Physics

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We study the existence and multiplicity of solutions and the global solution curve of the following free boundary value problem, arising in plasma physics, see Temam (Arch Ration Mech Anal 60(1):51–73, 1975–1976), and Berestycki and Brezis (Nonlinear Anal. 4(3):415–436, 1980): find a function \(u(x)\) and a constant \(b\), satisfying

$$\begin{aligned}&\Delta u+g(x,u)=p(x) \; \;\text{ in }\, D \\&u \,| \, _{\partial D}=b, \; \;\; \;\int \limits _{\partial D} \frac{\partial u}{\partial n} \, ds=0. \end{aligned}$$

Here \(D \subset R^n\), is a bounded domain, with a smooth boundary. This problem can be seen as a PDE generalization of the periodic problem for one-dimensional pendulum-like equations. We use continuation techniques. Our approach is suitable for numerical computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amster, P., De Napoli, P.L., Mariani, M.C.: Existence of solutions to \(N\)-dimensional pendulum-like equations. Electron. J. Differ. Equ. 125, 8 (2004)

    Google Scholar 

  2. Berestycki, H., Brezis, H.: On a free boundary problem arising in plasma physics. Nonlinear Anal. 4(3), 415–436 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  3. Castro, A.: Periodic solutions of the forced pendulum equation. In: Differential Equations (Proceedings of the 8th Fall Conference, Oklahoma State Univ., Stillwater, Okla., 1979), pp. 149–160. Academic Press, New York (1980)

  4. Cepicka, J., Drabek, P., Jensikova, J.: On the stability of periodic solutions of the damped pendulum equation. J. Math. Anal. Appl. 209, 712–723 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chang, K.-C.: Remarks on free boundary problems for the flux equations in plasma physics. Commun. Partial Differ. Equ. 5(7), 741–751 (1980)

    Article  MATH  Google Scholar 

  6. de Figueiredo, D.G., Ni, W.-M.: Perturbations of second order linear elliptic problems by nonlinearities without Landesman–Lazer condition. Nonlinear Anal. 3(5), 629–634 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fournier, G., Mawhin, J.: On periodic solutions of forced pendulum-like equations. J. Differ. Equ. 60(3), 381–395 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Katriel, G.: Periodic solutions of the forced pendulum: exchange of stability and bifurcations. J. Differ. Equ. 182(1), 1–50 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Korman, P.: A global solution curve for a class of periodic problems, including the pendulum equation. Z. Angew. Math. Phys. (ZAMP) 58, 749–766 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Korman, P.: Global solution curves for boundary value problems, with linear part at resonance. Nonlinear Anal. 71(7–8), 2456–2467 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Landesman, E.M., Lazer, A.C.: Nonlinear perturbations of linear elliptic boundary value problems at resonance. J. Math. Mech. 19, 609–623 (1970)

    MATH  MathSciNet  Google Scholar 

  12. Mawhin, J.: Seventy-five years of global analysis around the forced pendulum equation. In: Agarwal, R.P., Neuman, F., Vosmansky, J. (eds.) Proceedings of Equadiff 9, pp. 115–145. Masaryk University, Brno (1997)

    Google Scholar 

  13. Ortega, R.: Stability and index of periodic solutions of an equation of Duffing type. Boll. Un. Mat. Ital. B (7) 3, 533–546 (1989)

    MATH  MathSciNet  Google Scholar 

  14. Ortega, R.: Topological degree and stability of periodic solutions for certain differential equations. J. London Math. Soc. (2) 42(3), 505–516 (1990)

  15. Tarantello, G.: On the number of solutions of the forced pendulum equations. J. Differ. Equ. 80, 79–93 (1989

    Google Scholar 

  16. Temam, R.: A nonlinear eigenvalue problem: equilibrium shape of a confined plasma. Arch. Ration. Mech. Anal. 60(1), 51–73 (1975–1976)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Korman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korman, P. A Global Solution Curve for a Class of Free Boundary Value Problems Arising in Plasma Physics. Appl Math Optim 71, 25–38 (2015). https://doi.org/10.1007/s00245-014-9251-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-014-9251-7

Keywords

Mathematical Subject Classification

Navigation