Skip to main content

Advertisement

Log in

Source Identification of Soil Mercury in the Spanish Islands

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

This study spatially analysed the relation between mercury (Hg) content in soil and Hg in rock fragment for the purpose of assessing natural soil Hg contribution compared with Hg from human inputs. We present the Hg content of 318 soil and rock fragment samples from 11 islands distributed into two Spanish archipelagos (the volcanic Canary Islands [Canaries] and the Mediterranean Balearic [Balearic] islands). Assumedly both are located far enough away from continental Hg sources to be able to minimise the effects of diffuse pollution. Physical and chemical soil properties were also specified for the samples. Hg contents were significantly greater in the Balearic limestone soils (61 μg kg−1) than in the volcanic soils of the Canaries (33 μg kg−1). Hg levels were also greater in topsoil than in rocky fragments, especially on the Balearics. The soil-to-rock ratios varied between 1 and 30. Interestingly, the highest topsoil-to-rock Hg ratio (>16 ×) was found in the vicinity of a coal-fired power plant in Majorca, whereas no similar areas in the Canary archipelago were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals. Springer, New York

    Google Scholar 

  • Aelion CM, Davis HT, McDermott S, Lawson AB (2009) Soil metal concentrations and toxicity: associations with distances to industrial facilities and implications for human health. Sci Total Environ 407:2216–2223

    Article  CAS  Google Scholar 

  • Alloway BJ (1995) Heavy metals in soils, 2nd edn. Blackie Academic & Professional, London

    Book  Google Scholar 

  • Boluda R (1988) Relaciones estadísticas de los valores de metales pesados (Cd, Co., Cu, Cr, Ni, Pb y Zn) con el pH, contenido en materia orgánica, carbonatos totales y arcilla de los suelos de la comarca La Plana de Requena-Utiel (Valencia). Anal Edafol Agrobiol 47:1503–1524

    Google Scholar 

  • Bueno P, Bellido E, Rubí J, Ballesta R (2009) Concentration and spatial variability of mercury and other heavy metals in surface soil samples of periurban waste mine tailing along a transect in the Almadén mining district (Spain). Environ Geol 56:815–824

    Article  CAS  Google Scholar 

  • Carbonell G, Imperial RMD, Torrijos M, Delgado M, Rodriguez JA (2011) Effects of municipal solid waste compost and mineral fertilizer amendments on soil properties and heavy metals distribution in maize plants (Zea mays L.). Chemosphere 85:1614–1623

    Article  CAS  Google Scholar 

  • Chen M, Ma LQ, Harris WG (1999) Baseline concentrations of 15 trace elements in Florida surface soils. J Environ Qual 28:1123–1181

    Google Scholar 

  • Christoforidis A, Stamatis N (2009) Heavy metal contamination in street dust and roadside soil along the major national road in Kavala’s region, Greece. Geoderma 151:257–263

    Article  CAS  Google Scholar 

  • Coequyt J, Environmental Working Group, Natural Resources Defense Council, Clean Air Network (1999) Mercury falling: an analysis of mercury pollution from coal-burning power plants. Environmental Working Group, Washington, DC

  • Cooper CM, Gillespie WB Jr (2001) Arsenic and mercury concentrations in major landscape components of an intensively cultivated watershed. Environ Pollut 111:67–74

    Article  CAS  Google Scholar 

  • Dietz R, Riget F, Born EW (2000) An assessment of selenium to mercury in Greenland marine animals. Sci Total Environ 245:15–24

    Article  CAS  Google Scholar 

  • Engle MA, Sexauer Gustin M, Lindberg SE, Gertler AW, Ariya PA (2005) The influence of ozone on atmospheric emissions of gaseous elemental mercury and reactive gaseous mercury from substrates. Atmos Environ 39:7506–7517

    Article  CAS  Google Scholar 

  • Furl C, Meredith C (2011) Mercury accumulation in sediment cores from three Washington state lakes: evidence for local deposition from a coal-fired power plant. Arch Environ Contam Toxicol 60:26–33

    Article  CAS  Google Scholar 

  • García-Sánchez A, Murciego A, Álvarez-Ayuso E, Regina IS, Rodríguez-González MA (2009) Mercury in soils and plants in an abandoned cinnabar mining area (SW Spain). J Hazard Mater 168:1319–1324

    Article  Google Scholar 

  • Gbor PK, Wen D, Meng F, Yang F, Sloan JJ (2007) Modeling of mercury emission, transport and deposition in North America. Atmos Environ 41:1135–1149

    Article  CAS  Google Scholar 

  • Gil C, Ramos-Miras J, Roca-Pérez L, Boluda R (2010) Determination and assessment of mercury content in calcareous soils. Chemosphere 78:409–415

    Article  CAS  Google Scholar 

  • Gimeno-García E, Andreu V, Boluda R (1995) Distribution of heavy metals in rice farming soils. Arch Environ Contam Toxicol 29:476–483

    Article  Google Scholar 

  • Goodarzi F (2009) Environmental assessment of bottom ash from Canadian coal-fired power plants. Open Environ Biol Monit J 2:1–10

    Article  CAS  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

    Google Scholar 

  • Göthberg A, Greger M (2006) Formation of methyl mercury in an aquatic macrophyte. Chemosphere 65:2096–2105

    Article  Google Scholar 

  • Holy M, Leblond S, Pesch R, Schröder W (2009) Assessing spatial patterns of metal bioaccumulation in French mosses by means of an exposure index. Environ Sci Pollut Res Int 16:499–507

    Article  CAS  Google Scholar 

  • Krabbenhoft D, Engstrom D, Gilmour C, Harris R, Hurley J, Mason R (2007) Monitoring and evaluating trends in sediment and water indicators. In: Harris R, Krabbenhoft DP, Mason R et al (eds) Ecosystem responses to mercury contamination: indicators of change. SETAC Press, Pensacola, pp 47–87

    Chapter  Google Scholar 

  • Lacerda LD, de Souza M, Ribeiro MG (2004) The effects of land use change on mercury distribution in soils of Alta Floresta, Southern Amazon. Environ Pollut 129:247–255

    Article  CAS  Google Scholar 

  • Liu R, Wang Q, Lu X, Fang F, Wang Y (2003) Distribution and speciation of mercury in the peat bog of Xiaoxing’an Mountain, northeastern China. Environ Pollut 124:39–46

    Article  CAS  Google Scholar 

  • López Alonso M, Benedito JL, Miranda M, Fernández JA, Castillo C, Hernández J et al (2003) Large-scale spatial variation in mercury concentrations in cattle in NW Spain. Environ Pollut 125:173–181

    Article  Google Scholar 

  • Nóvoa-Muñoz JC, Pontevedra-Pombal X, Martínez-Cortizas A, García-Rodeja Gayoso E (2008) Mercury accumulation in upland acid forest ecosystems nearby a coal-fired power-plant in Southwest Europe (Galicia, NW Spain). Sci Total Environ 394:303–312

    Article  Google Scholar 

  • Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338(6210):47–49

    Article  CAS  Google Scholar 

  • Pacyna EG, Pacyna JM, Fudala J, Strzelecka-Jastrzab E, Hlawiczka S, Panasiuk D (2006) Mercury emissions to the atmosphere from anthropogenic sources in Europe in 2000 and their scenarios until 2020. Sci Total Environ 370:147–156

    Article  CAS  Google Scholar 

  • Pant P, Allen M (2007) Interaction of soil and mercury as a function of soil organic carbon: some field evidence. Bull Environ Contam Toxicol 78:539–542

    Article  CAS  Google Scholar 

  • Pyle DM, Mather TA (2003) The importance of volcanic emissions for the global atmospheric mercury cycle. Atmos Environ 37:5115–5124

    Article  CAS  Google Scholar 

  • Rodríguez Martín J, Vázquez de la Cueva A, Grau Corbí J, López Arias M (2007) Factors controlling the spatial variability of copper in topsoils of the northeastern region of the Iberian Peninsula, Spain. Water Air Soil Pollut 186:311–321

    Article  Google Scholar 

  • Rodríguez Martín J, Carbonell Martín G, López Arias M, Grau Corbí J (2009a) Mercury content in topsoils, and geostatistical methods to identify anthropogenic input in the Ebro basin (Spain). Span J Agric Res 7:107–118

    Google Scholar 

  • Rodríguez Martín J, Vazquez de la Cueva A, Grau Corbí J, Martínez Alonso C, López Arias M (2009b) Factors controlling the spatial variability of mercury distribution in Spanish topsoil. Soil Sediment Contam 18:30–42

    Article  Google Scholar 

  • Salminen R, Plant J, Reeder S (2005) Geochemical atlas of Europe. Part 1: Background information, methodology and maps. Geological Survey of Finland, ISBN 9516909213. http://library.wur.nl/WebQuery/biola/lang/1914679

  • Schroeder WH, Munthe J (1998) Atmospheric mercury—an overview. Atmos Environ 32:809–822

    Article  CAS  Google Scholar 

  • Schuster PF, Krabbenhoft DP, Naftz DL, Cecil LD, Olson ML, Dewild JF et al (2002) Atmospheric mercury deposition during the last 270 years: a glacial ice core record of natural and anthropogenic sources. Environ Sci Technol 36:2303–2310

    Article  CAS  Google Scholar 

  • Sun B, Zhou S, Zhao Q (2003) Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China. Geoderma 115:85–99

    Article  Google Scholar 

  • Tack FMG, Vanhaesebroeck T, Verloo MG, Van Rompaey K, Van Ranst E (2005) Mercury baseline levels in Flemish soils (Belgium). Environ Pollut 134:173–179

    Article  CAS  Google Scholar 

  • Tipping E, Lofts S, Hooper H, Frey B, Spurgeon D, Svendsen C (2010) Critical limits for Hg(II) in soils, derived from chronic toxicity data. Environ Pollut 158:2465–2471

    Article  CAS  Google Scholar 

  • Walkley A (1935) An examination of methods for determining organic carbon and nitrogen in soils. J Agric Sci 25:598–609

    Article  CAS  Google Scholar 

  • Wang S, Zhang L, Li G, Wu Y, Hao J, Pirrone N et al (2010) Mercury emission and speciation of coal-fired power plants in China. Atmos Chem Phys 10:1183–1192

    Article  CAS  Google Scholar 

  • Wang Z, Darilek J, Zhao Y, Huang B, Sun W (2011) Defining soil geochemical baselines at small scales using geochemical common factors and soil organic matter as normalizers. J Soil Sed 11:3–14

    Article  CAS  Google Scholar 

  • Weir S, Halbrook R, Sparling D (2010) Mercury concentrations in wetlands associated with coal-fired power plants. Ecotoxicology 19:306–316

    Article  CAS  Google Scholar 

  • Wu Y, Zhou Q, Adriano DC (1991) Interim environmental guidelines for cadmium and mercury in soils of China. Water Air Soil Pollut 57–58:733–743

    Article  Google Scholar 

  • Yang X, Wang L (2008) Spatial analysis and hazard assessment of mercury in soil around the coal-fired power plant: a case study from the city of Baoji, China. Environ Geol 53:1381–1388

    Article  CAS  Google Scholar 

  • Zarcinas B, Pongsakul P, McLaughlin M, Cozens G (2004) Heavy metals in soils and crops in Southeast Asia. 2. Thailand. Environ Geochem Health 26:359–371

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the financial assistance provided by the Spanish Ministry (Grant No. CC01-0013) and are also grateful to the Spanish Ministry of Science and Innovation for Project CGL2009-14686-C02-02 as well as CAM for Project P2009/AMB-1648 CARESOIL. The authors thank Manuel Torrijos for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Antonio Rodríguez Martín.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez Martín, J.A., Carbonell, G., Nanos, N. et al. Source Identification of Soil Mercury in the Spanish Islands. Arch Environ Contam Toxicol 64, 171–179 (2013). https://doi.org/10.1007/s00244-012-9831-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-012-9831-y

Keywords

Navigation