Skip to main content
Log in

Proline Might Have Been the First Amino Acid in the Primitive Genetic Code

  • Letter to the Editor
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Stereochemical assignment of amino acids and corresponding codons or anticodons has not been successful so far. Here, we focused on proline and GGG (anticodon of tRNAPro) and investigated their mutual interaction. Circular dichroism spectroscopy revealed that guanosine nucleotides (GG, GGG) formed G-quartet structures. The structures were destroyed by adding high concentrations of proline. We propose that the possibility of the reversible proline/G-quartet interaction could have contributed to the specific assignment of proline on GGG and that this coding could have been the first in the genetic code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Aboul-ela F, Murchie AIH, Lilley DMJ (1992) NMR study of parallel-stranded tetraplex formation by the hexadeoxynucleotide d(TG4T). Nature 360:280–282

    Article  CAS  PubMed  Google Scholar 

  • Balagurumoorthy P, Brahmachari SK, Mohanty D, Bansal M, Sasisekharan V (1992) Hairpin and parallel quartet structures for telomeric sequences. Nucleic Acids Res 20:4061–4067

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bernhardt HS, Patrick WM (2014) Genetic code evolution started with the incorporation of glycine, followed by other small hydrophilic amino acids. J Mol Evol 78:307–309

  • Crick FHC (1968) The origin of the genetic code. J Mol Biol 38:367–379

    Article  CAS  PubMed  Google Scholar 

  • Eigen M, Schuster P (1977) Hypercycle. A principle of natural self-organization. Part A: emergence of the hypercycle. Naturwissenschaften 64:541–565

    Article  CAS  PubMed  Google Scholar 

  • Hardin CC, Henderson E, Watson T, Prosser JK (1991) Monovalent cation induced structural transitions in telomeric DNAs: G-DNA folding intermediates. Biochemistry 30:4460–4472

    Article  CAS  PubMed  Google Scholar 

  • Jurka J, Smith TF (1987) β-turn-driven early evolution: the genetic code and biosynthetic pathways. J Mol Evol 25:15–19

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Cheong C, Moore PB (1991) Tetramerization of an RNA oligonucleotide containing a GGGG sequence. Nature 351:331–332

    Article  CAS  PubMed  Google Scholar 

  • Lacey JC Jr, Mullins DW Jr (1983) Experimental studies related to the origin of the genetic code and the process of protein synthesis. Orig Life 13:3–42

    Article  CAS  PubMed  Google Scholar 

  • Laughlan G, Murchie AI, Norman DG, Moore MH, Moody PC, Lilley DM, Luisi B (1994) The high-resolution crystal structure of a parallel-stranded guanine tetraplex. Science 265:520–524

    Article  CAS  PubMed  Google Scholar 

  • Samuel D, Kumar TK, Ganesh G, Jayaraman G, Yang PW, Chang MM, Trivedi VD, Wang SL, Hwang KC, Chang DK, Yu C (2000) Proline inhibits aggregation during protein refolding. Protein Sci 9:344–352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schimmel P (1996) Origin of genetic code: a needle in the haystack of tRNA sequences. Proc Natl Acad Sci USA 93:4521–4522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sen D, Gilbert W (1988) Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334:364–366

    Article  CAS  PubMed  Google Scholar 

  • Shimizu M (1982) Molecular basis for the genetic code. J Mol Evol 18:297–303

    Article  CAS  PubMed  Google Scholar 

  • Umehara T, Kitagawa T, Nakazawa Y, Yoshino H, Nemoto R, Tamura K (2012) RNA tetraplex as a primordial peptide synthesis scaffold. BioSystems 109:145–150

    Article  CAS  PubMed  Google Scholar 

  • Wilmot CM, Thornton JM (1988) Analysis and prediction of the different types of β-turn in proteins. J Mol Biol 203:221–232

    Article  CAS  PubMed  Google Scholar 

  • Wong JT (1975) A co-evolution theory of the genetic code. Proc Natl Acad Sci USA 72:1909–1912

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yarus M (1998) Amino acids as RNA ligands: a direct-RNA-template theory for the code’s origin. J Mol Evol 47:109–117

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants-in-aid for Scientific Research from the Ministry of Education, Science, Sports and Culture (MEXT), Japan (Grant No. 25291082 to K.T. and 24710231 to T.U.), and the programme for the development of strategic research centre in private universities by MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Tamura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komatsu, R., Sawada, R., Umehara, T. et al. Proline Might Have Been the First Amino Acid in the Primitive Genetic Code. J Mol Evol 78, 310–312 (2014). https://doi.org/10.1007/s00239-014-9629-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-014-9629-9

Keywords

Navigation