Skip to main content
Log in

A semigroup approach to the numerical range of operators on Banach spaces

  • Research Article
  • Published:
Semigroup Forum Aims and scope Submit manuscript

Abstract

We introduce the numerical spectrum \(\sigma _n(A)\subseteq {\mathbb {C}}\) of an (unbounded) linear operator A on a Banach space X and study its properties. Our definition is closely related to the numerical range W(A) of A and always yields a superset of W(A). In the case of bounded operators on Hilbert spaces, the two notions coincide. However, unlike the numerical range, \(\sigma _n(A)\) is always closed, convex and contains the spectrum of A. In the paper we strongly emphasise the connection of our approach to the theory of \(C_0\)-semigroups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. For every \(x\in X\), the duality set \({\mathfrak {J}}(x)\) is defined as

  2. We call \(\sigma _r(A):=\{\lambda \in {{\mathbb {C}}}: rg(\lambda -A)\text { is not dense in }X\}\) the residual spectrum of A. It coincides with the point spectrum \(\sigma _p(A^\prime )\) of the adjoint \(A'\) of A, see [6, Prop. IV.1.12].

  3. For \( 0<\delta <\frac{\pi }{2}\) and \(\theta \in [0,2\pi )\), \(z\in {{\mathbb {C}}}\) we define \(\Sigma ^{\theta }_{\delta }+z:=\{ z+ e^{-i\theta }\;\lambda \in {{\mathbb {C}}}: |arg \lambda |\le \delta \}\).

  4. In the following, \({\mathbb {C}}_{-}\) denotes the closed left half plane, i.e., \({\mathbb {C}}_{-}:=\{\lambda \in {\mathbb {C}}:\hbox {Re}\,{\lambda }\le 0\}\).

References

  1. Bauer, F.L.: On the field of values subordinate to a norm. Numer. Math. 4, 103–113 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bollobás, B.: On the numerical range of an operator. Stoch. Anal. 374–386 (1973)

  3. Bollobás, B., Eldridge, S.E.: The numerical ranges of unbounded linear operators. Bull. Aust. Math. Soc. 12, 23–25 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Crabb, M.J.: The numerical range of an unbounded operator. Proc. Am. Math. Soc. 55, 95–96 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  5. Davies, E.B.: Spectral Theory and Differential Operators. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  6. Engel, K.J., Nagel, R.: One Parameter Semigroups for Linear Evolution Equations. Springer, New York (2000)

    MATH  Google Scholar 

  7. Giles, J.R., Joseph, G.: The numerical range of unbounded operator. Bull. Aust. Math. Soc. 11, 31–36 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gustafson, K.E.: The Toeplitz-Hausdorff theorem for linear operators. Proc. Am. Math. Soc. 25, 203–204 (1970)

    MathSciNet  MATH  Google Scholar 

  9. Gustafson, K.E., Rao, D.K.M.: Numerical Range. Springer, New York (1997)

    Book  MATH  Google Scholar 

  10. Hausdorff, F.: Der Wertvorrat einer Bilinearform. Math. Z. 3, 314–316 (1919)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hildebrandt, S.: Über den numerischen Wertebereich eines Operators. Math. Ann. 163, 230–247 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kubrusly, C.S., Levan, N.: On exponential stability of contraction semigroups. Semigroup Forum 83, 513–521 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lumer, G.: Semi-inner-product spaces. Trans. Am. Math. Soc. 100, 29–43 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  14. Stone, M.H.: Linear Transformations in Hilbert Space and their Applications to Analysis. American Mathematical Society, Providence (1932)

    Book  MATH  Google Scholar 

  15. Toeplitz, O.: Das algebraische Analogon zu einem Satze von Fejér. Math. Z. 2(1–2), 187–197 (1918)

    Article  MathSciNet  MATH  Google Scholar 

  16. Trefethen, Lloyd N., Embree, M.: Spectra and Pseudospectra. The Behaivor of Nonnormal Matrices and Operators. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  17. Shapiro, J.H.: Numerical Range Notes. http://www.mth.msu.edu/~shapiro/pubvit/downloads/numrangenotes/numrange_notes.pdf. Accessed on 15 Dec 2013

  18. Zhang, F.: The Schur Complement and its Applications. Numerical Methods and Algorithms. Springer, New York (2005)

    Book  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Rainer Nagel for many valuable discussions and remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Adler.

Additional information

Communicated by Abdelaziz Rhandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adler, M., Dada, W. & Radl, A. A semigroup approach to the numerical range of operators on Banach spaces. Semigroup Forum 94, 51–70 (2017). https://doi.org/10.1007/s00233-015-9752-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00233-015-9752-y

Keywords

Navigation