Skip to main content

Advertisement

Log in

Gene Electrotransfer of Canine Interleukin 12 into Canine Melanoma Cell Lines

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

A gene electrotransfer (GET) of interleukin 12 (IL-12) had already given good results when treating tumors in human and veterinary clinical trials. So far, plasmids used in veterinary clinical studies encoded a human or a feline IL-12 and an ampicillin resistance gene, which is not recommended by the regulatory agencies to be used in clinical trials. Therefore, the aim of the current study was to construct the plasmid encoding a canine IL-12 with kanamycin antibiotic resistance gene that could be used in veterinary clinical oncology. The validation of the newly constructed plasmid was carried out on canine malignant melanoma cells, which have not been used in GET studies so far, and on human malignant melanoma cells. Canine and human malignant melanoma cell lines were transfected with plasmid encoding enhanced green fluorescence protein at different pulse parameter conditions to determine the transfection efficiency and cell survival. The IL-12 expression of the most suitable conditions for GET of the plasmid encoding canine IL-12 was determined at mRNA level by the qRT-PCR and at protein level with the ELISpot assay. The obtained results showed that the newly constructed plasmid encoding canine IL-12 had similar or even higher expression capacity than the plasmid encoding human IL-12. Therefore, it represents a promising therapeutic plasmid for further IL-12 gene therapy in clinical studies for spontaneous canine tumors. Additionally, it also meets the main regulatory agencies’ (FDA and EMA) criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Atkins MB, Robertson MJ, Gordon M, Lotze MT, DeCoste M, DuBois JS, Ritz J, Sandler AB, Edington HD, Garzone PD, Mier JW, Canning CM, Battiato L, Tahara H, Sherman ML (1997) Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin Cancer Res 3:409–417

    CAS  PubMed  Google Scholar 

  • Bloquel C, Fabre E, Bureau MF, Scherman D (2004) Plasmid DNA electrotransfer for intracellular and secreted proteins expression: new methodological developments and applications. J Gene Med 6(Suppl 1):S11–S23

    Article  CAS  PubMed  Google Scholar 

  • Bosnjak M, Lorente BC, Pogacar Z, Makovsek V, Cemazar M (2014) Different incubation times of cells after gene electrotransfer in fetal bovine serum affect cell viability, but not transfection efficiency. J Membr Biol 247:421–428

    Article  CAS  PubMed  Google Scholar 

  • Buttner M, Belke-Louis G, Rziha HJ, McInnes C, Kaaden OR (1998) Detection, cDNA cloning and sequencing of canine interleukin 12. Cytokine 10:241–248

    Article  CAS  PubMed  Google Scholar 

  • Cemazar M, Jarm T, Miklavcic D, Lebar AM, Ihan A, Kopitar NA, Sersa G (1998) Effect of electric-field intensity on electropermeabilization and electrosensitivity of various tumor-cell lines in vitro. Electromagn Biol Med 17:263–272

    Google Scholar 

  • Cemazar M, Wilson I, Dachs GU, Tozer GM, Sersa G (2004) Direct visualization of electroporation-assisted in vivo gene delivery to tumors using intravital microscopy—spatial and time dependent distribution. BMC Cancer 4:81

    Article  PubMed Central  PubMed  Google Scholar 

  • Cemazar, M, Sersa, G, Pavlin, D, Tozon, N (2011) Intramuscular IL-12 electrogene therapy for treatment of spontaneous canine tumors, targets in gene therapy, Prof. Yongping You (Ed.), ISBN: 978-953-307-540-2, InTech, doi: 10.5772/20734. http://www.intechopen.com/books/targets-in-gene-therapy/intramuscular-il-12-electrogene-therapy-for-treatment-of-spontaneous-canine-tumors. Accessed 13 Jan 2015

  • Chuang TF, Lee SC, Liao KW, Hsiao YW, Lo CH, Chiang BL, Lin XZ, Tan MH, Chu RM (2009) Electroporation-mediated IL-12 gene therapy in a transplantable canine cancer model. Int J Cancer 125:698–707

    Article  CAS  PubMed  Google Scholar 

  • Cutrera J, Torrero M, Shiomitsu K, Mauldin N, Li S (2008) Intratumoral bleomycin and IL-12 electrochemogenetherapy for treating head and neck tumors in dogs. Methods Mol Biol 423:319–325

    Article  CAS  PubMed  Google Scholar 

  • Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, Munster PN, Sullivan DM, Ugen KE, Messina JL, Heller R (2008) Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 26:5896–5903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dean DA (2013) Cell-specific targeting strategies for electroporation-mediated gene delivery in cells and animals. J Membr Biol 246:737–744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Delteil C, Teissie J, Rols MP (2000) Effect of serum on in vitro electrically mediated gene delivery and expression in mammalian cells. Biochim Biophys Acta 1467:362–368

    Article  CAS  PubMed  Google Scholar 

  • dos Santos LR, Barrouin-Melo SM, Chang YF, Olsen J, McDonough SP, Quimby F, dos Santos WL, Pontes-de-Carvalho LC, Oliveira GG (2004) Recombinant single-chain canine interleukin 12 induces interferon gamma mRNA expression in peripheral blood mononuclear cells of dogs with visceral leishmaniasis. Vet Immunol Immunopathol 98:43–48

    Article  PubMed  Google Scholar 

  • EMA (European Medicines Agency) (2011) EMA/CAT/GTWP/44236/2009: Reflection paper on design modifications of gene therapy medicinal products during development. Retrieved December 20, 2014 from http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/02/WC500122743.pdf

  • FDA (U.S. Food and Drug Administration) (1996) PTC Document Docket No 96-N-0400: Points to consider on plasmid DNA vaccines for preventive infectious disease indications. Retrieved December 20, 2014 from http://www.gpo.gov/fdsys/granule/FR-1996-12-27/96-32930

  • Ferreira E, Potier E, Logeart-Avramoglou D, Salomskaite-Davalgiene S, Mir LM, Petite H (2008) Optimization of a gene electrotransfer method for mesenchymal stem cell transfection. Gene Ther 15:537–544

    Article  CAS  PubMed  Google Scholar 

  • Gillard M, Cadieu E, De Brito C, Abadie J, Vergier B, Devauchelle P, Degorce F, Dreano S, Primot A, Dorso L, Lagadic M, Galibert F, Hedan B, Galibert MD, Andre C (2014) Naturally occurring melanomas in dogs as models for non-UV pathways of human melanomas. Pigment Cell Melanoma Res 27:90–102

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Hao R, Wei Y, Sun D, Sun S, Zhang Z (2012) Optimization of electrotransfection conditions of mammalian cells with different biological features. J Membr Biol 245:789–795

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Ohashi E, Kadosawa T, Hong SH, Matsunaga S, Mochizuki M, Nishimura R, Sasaki N (2004) Establishment and characterization of four canine melanoma cell lines. J Vet Med Sci 66:1437–1440

    Article  PubMed  Google Scholar 

  • Kung AL (2007) Practices and pitfalls of mouse cancer models in drug discovery. Adv Cancer Res 96(96):191–212

    CAS  PubMed  Google Scholar 

  • Liew A, Andre FM, Lesueur LL, De Menorval MA, O’Brien T, Mir LM (2013) Robust, efficient, and practical electrogene transfer method for human mesenchymal stem cells using square electric pulses. Hum Gene Ther Methods 24:289–297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mali B, Jarm T, Snoj M, Sersa G, Miklavcic D (2013) Antitumor effectiveness of electrochemotherapy: a systematic review and meta-analysis. Eur J Surg Oncol 39:4–16

    Article  CAS  PubMed  Google Scholar 

  • Oliveira PH, Mairhofer J (2013) Marker-free plasmids for biotechnological applications—implications and perspectives. Trends Biotechnol 31(9):539–547

    Article  CAS  PubMed  Google Scholar 

  • Pavlin D, Cemazar M, Cor A, Sersa G, Pogacnik A, Tozon N (2011) Electrogene therapy with interleukin-12 in canine mast cell tumors. Radiol Oncol 45:31–39

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ranieri G, Gadaleta CD, Patruno R, Zizzo N, Daidone MG, Hansson MG, Paradiso A, Ribatti D (2013) A model of study for human cancer: spontaneous occurring tumors in dogs. Biological features and translation for new anticancer therapies. Crit Rev Oncol Hematol 88:187–197

    Article  CAS  PubMed  Google Scholar 

  • Reed SD, Fulmer A, Buckholz J, Zhang B, Cutrera J, Shiomitsu K, Li S (2010) Bleomycin/interleukin-12 electrochemogene therapy for treating naturally occurring spontaneous neoplasms in dogs (Retraction of vol 17, pg 571, 2010). Cancer Gene Ther 17:826

    Article  CAS  Google Scholar 

  • Rols MP, Teissie J (1998) Electropermeabilization of mammalian cells to macromolecules: control by pulse duration. Biophys J 75:1415–1423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scelsi D, Mevio N, Bertino G, Occhini A, Brazzelli V, Morbini P, Benazzo M (2013) Electrochemotherapy as a new therapeutic strategy in advanced Merkel cell carcinoma of head and neck region. Radiol Oncol 47:366–369

    Article  PubMed Central  PubMed  Google Scholar 

  • Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473:337–342

    Article  PubMed  Google Scholar 

  • Shebl FM, Pinto LA, Garcia-Pineres A, Lempicki R, Williams M, Harro C, Hildesheim A (2010) Comparison of mRNA and protein measures of cytokines following vaccination with human papillomavirus-16 L1 virus-like particles. Cancer Epidemiol Biomark Prev 19:978–981

    Article  CAS  Google Scholar 

  • Solensky R (2003) Hypersensitivity reactions to beta-lactam antibiotics. Clin Rev Allergy Immunol 24:201–220

    Article  CAS  PubMed  Google Scholar 

  • Spanggaard I, Snoj M, Cavalcanti A, Bouquet C, Sersa G, Robert C, Cemazar M, Dam E, Vasseur B, Attali P, Mir LM, Gehl J (2013) Gene electrotransfer of plasmid antiangiogenic metargidin peptide (AMEP) in disseminated melanoma: safety and efficacy results of a phase I first-in-man study. Hum Gene Ther Clin Dev 24:99–107

    Article  CAS  PubMed  Google Scholar 

  • Tesic N, Cemazar M (2013) In vitro targeted gene electrotransfer to endothelial cells with plasmid DNA containing human endothelin-1 promoter. J Membr Biol 246:783–791

    Article  CAS  PubMed  Google Scholar 

  • Tozon N, Pavlin D, Sersa G, Dolinsek T, Cemazar M (2014) Electrochemotherapy with intravenous bleomycin injection: an observational study in superficial squamous cell carcinoma in cats. J Feline Med Surg 16:291–299

    Article  PubMed  Google Scholar 

  • Vandermeulen G, Marie C, Scherman D, Preat V (2011) New generation of plasmid backbones devoid of antibiotic resistance marker for gene therapy trials. Mol Ther 19:1942–1949

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13:227–232

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou W, Xiong Z, Liu Y, Yao C, Li C (2012) Low voltage irreversible electroporation induced apoptosis in HeLa cells. J Cancer Res Ther 8:80–85

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge M. Lavric for her help with cell cultures. This work was financially supported by the Slovenian Research Agency (programs P3-0003 and P1-0140, Projects J3-4259, J3-6796 and J3-6793). The research was conducted within the scope of LEA EBAM (French-Slovenian European Associated Laboratory: Pulsed Electric Fields Applications in Biology and Medicine) and within the COST TD1104 Action.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Cemazar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lampreht, U., Kamensek, U., Stimac, M. et al. Gene Electrotransfer of Canine Interleukin 12 into Canine Melanoma Cell Lines. J Membrane Biol 248, 909–917 (2015). https://doi.org/10.1007/s00232-015-9800-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-015-9800-2

Keywords

Navigation