Skip to main content

Advertisement

Log in

Omega-3 Fatty Acids and the Regulation of Expression of Endothelial Pro-Atherogenic and Pro-Inflammatory Genes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

By partially replacing the corresponding omega-6 analogues in membrane phospholipids, omega-3 fatty acids have been shown to decrease the transcriptional activation of genes — e.g., adhesion molecules, chemoattractants, inflammatory cytokines — involved in endothelial activation in response to inflammatory and pro-atherogenic stimuli. This regulation occurs, at least in part, through a decreased activation of the nuclear factor-κB system of transcription factors, secondary to decreased generation of intracellular hydrogen peroxide. Such regulation by omega-3 fatty acids is likely linked to the presence of a higher number of double bonds in the fatty acid chain in omega-3 compared with omega-6 fatty acids. By similar mechanisms, omega-3 fatty acids have been recently shown to reduce gene expression of cyclooxygenase-2, an inflammatory gene involved, through the activation of some metalloproteinases, in plaque angiogenesis and plaque rupture. The quenching of gene expression of pro-inflammatory pro-atherogenic genes by omega-3 fatty acids has consequences on the extent of leukocyte adhesion to vascular endothelium, early atherogenesis and later stages of plaque development and plaque rupture, ultimately yielding a plausible comprehensive explanation for the vasculoprotective effects of these nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Ait-Said F., Elalamy I., Werts C., Gomard M.T., Jacquemin C., Couetil J.P., Hatmi M. 2003. Inhibition by eicosapentaenoic acid of IL-1beta-induced PGHS-2 expression in human microvascular endothelial cells: involvement of lipoxygenase-derived metabolites and p38 MAPK pathway. Biochim. Biophys. Acta. 1631:77–84

    CAS  PubMed  Google Scholar 

  2. Akarasereenont P., Bakhle Y.S., Thiemermann C., Vane J.R. 1995. Cytokine-mediated induction of cyclo-oxygenase-2 by activation of tyrosine kinase in bovine endothelial cells stimulated by bacterial lipopolysaccharide. Br. J. Pharmacol. 115:401–408

    CAS  PubMed  Google Scholar 

  3. Al-Fakhri N., Wilhelm J., Hahn M., Heidt M., Hehrlein F.W., Endisch A.M., Hupp T., Cherian S.M., Bobryshev Y.V., Lord R.S., Katz N. 2003. Increased expression of disintegrin-metalloproteinases ADAM-15 and ADAM-9 following upregulation of integrins alpha5beta1 and alphavbeta3 in atherosclerosis. J. Cell Biochem. 89:808–823

    Article  CAS  PubMed  Google Scholar 

  4. Arthaud B. 1970. Cause of death in 339 Alaskan natives as determined by autopsy. Arch. Pathol. 90:433–438

    CAS  PubMed  Google Scholar 

  5. Bagga, D., Wang, L., Farias-Eisner, R., Glaspy, J.A., Reddy, S.T. 2003. Differential effects of prostaglandin derived from omega-6 and omega-3 polyunsaturated fatty acids on COX-2 expression and IL-6 secretion. Proc. Natl. Acad. Sci USA 100:1751–1756. Epub 2003 Feb 1710

    Google Scholar 

  6. Bang H.O., Dyerberg J., Hjorne N. 1976. The composition of food consumed by Greenland Eskimos. Acta Med. Scand. 200:69–73

    CAS  PubMed  Google Scholar 

  7. Barbieri S.S., Cavalca V., Eligini S., Brambilla M., Caiani A., Tremoli E, Colli S. 2004. Apocynin prevents cyclooxygenase 2 expression in human monocytes through NADPH oxidase and glutathione redox-dependent mechanisms. Free Radic. Biol. Med. 37:156–165

    Article  CAS  PubMed  Google Scholar 

  8. Barger A.C., Beeuwkes R., 3rd, Lainey L.L., Silverman K.J. 1984. Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N. Engl. J. Med. 310:175–177

    CAS  PubMed  Google Scholar 

  9. Bayes-Genis A., Conover C.A., Overgaard M.T., Bailey K.R., Christiansen M., Holmes D.R., Jr., Virmani R., Oxvig C., Schwartz R.S. 2001. Pregnancy-associated plasma protein A as a marker of acute coronary syndromes. N. Engl. J. Med. 345:1022–1029

    Article  CAS  PubMed  Google Scholar 

  10. Bea F., Blessing E., Bennett B.J., Kuo C.C., Campbell L.A., Kreuzer J., Rosenfeld M.E. 2003. Chronic inhibition of cyclooxygenase-2 does not alter plaque composition in a mouse model of advanced unstable atherosclerosis. Cardiovasc. Res. 60:198–204

    Article  CAS  PubMed  Google Scholar 

  11. Beaudeux J.L., Giral P., Bruckert E., Foglietti M.J., Chapman M.J. 2004. Matrix metalloproteinases, inflammation and atherosclerosis: therapeutic perspectives. Clin. Chem. Lab. Med. 42:121–131

    Article  CAS  PubMed  Google Scholar 

  12. Bechler K. 1997. Influence of capping and polyadenylation on mRNA expression and on antisense RNA mediated inhibition of gene expression. Biochem Biophys. Res. Commun. 241:193–199

    Article  CAS  PubMed  Google Scholar 

  13. Bode W., Grams F., Reinemer P., Gomis-Ruth F.X., Baumann U., McKay D.B., Stocker W. 1996. The metzincin-superfamily of zinc-peptidases. Adv. Exp. Med. Biol. 389:1–11

    CAS  PubMed  Google Scholar 

  14. Burleigh M.E., Babaev V.R., Gates J.A., Harris R.C., Gautam S., Riendeau D., Marnett L.J., Morrow J.D., Fazio S., Linton M.F. 2002. Cycloxygenase-2 promotes early atherosclerotic lesion formation in LDL receptor-deficient mice. Circulation 105:1816–1823

    Article  CAS  PubMed  Google Scholar 

  15. Burleigh M.E., Babaev V.R., Yancey P.G., Major A.S., McCaleb J.L., Gates J.A., Morrow J.D., Fazio S., Linton M.F. 2005. Cyclooxygenase-2 promotes early atherosclerotic lesion formation in ApoE-deficient and C57BL/6 mice. J. Mol. Cell. Cardiol. 21:21

    Google Scholar 

  16. Callejas N., Casado M., Diaz-Guerra M., Bosca L., Martin-Sanz P. 2001. Expression of cyclooxygenase-2 promotes the release of matrix metalloproteinase-2 and -9 in fetal rat hepatocytes. Hepatology 33:860–867

    Article  CAS  PubMed  Google Scholar 

  17. Calviello G., Di Nicuolo F., Gragnoli S., Piccioni E., Serini S., Maggiano N., Tringali G., Navarra P., Ranelletti F.O., Palozza P. 2004. n-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE2 induced ERK-1 and -2 and HIF-1alpha induction pathway. Carcinogenesis 25:2303–2310

    Article  CAS  PubMed  Google Scholar 

  18. Carluccio M.A., Massaro M., Bonfrate C., Siculella L., Maffia M., Nicolardi G., Distante A., Storelli C., De Caterina R. 1999. Oleic acid inhibits endothelial activation: A direct vascular antiatherogenic mechanism of a nutritional component in the mediterranean diet. Arterioscler. Thromb. Vasc. Biol. 19:220–228

    CAS  PubMed  Google Scholar 

  19. Chandrasekharan N.V., Dai H., Roos K.L., Evanson N.K., Tomsik J., Elton T.S., Simmons D.L. 2002. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc. Natl. Acad. Sci. U S A 99:13926–13931

    Article  CAS  PubMed  Google Scholar 

  20. Chase A.J., Bond M., Crook M.F., Newby A.C. 2002. Role of nuclear factor-kappa B activation in metalloproteinase-1, -3, and -9 secretion by human macrophages in vitro and rabbit foam cells produced in vivo. Arterioscler. Thromb. Vasc. Biol. 22:765–771

    CAS  Google Scholar 

  21. Chen H., Li D., Roberts G.J., Saldeen T., Mehta J.L. 2003. Eicosapentanoic acid inhibits hypoxia-reoxygenation-induced injury by attenuating upregulation of MMP-1 in adult rat myocytes. Cardiovasc. Res. 59:7–13

    CAS  PubMed  Google Scholar 

  22. Cipollone F., Prontera C., Pini B., Marini M, Fazia M., De Cesare D., Iezzi A., Ucchino S., Boccoli G., Saba V., Chiarelli F., Cucurullo F., Mezzetti A. 2001. Overexpression of functionally coupled cyclooxygenase-2 and prostaglandin E synthase in symptomatic atherosclerotic plaque as a basis of prostaglandin E2-dependent plaque instability. Circulation 104:921–927

    CAS  PubMed  Google Scholar 

  23. Cole C.N. 2000. mRNA export: the long and widing road. Nat. Cell Biol. 2:E55–E58

    Article  CAS  PubMed  Google Scholar 

  24. Collins T. 1993. Endothelial nuclear factor-κB and the initiation of the atherosclerotic lesion. Lab. Invest. 68:499–508

    CAS  PubMed  Google Scholar 

  25. Collins T., Read M.A., Neish A.S., Whitley M.Z., Thanos D., Maniatis T. 1995. Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B and cytokine-inducible enhancers. FASEB J. 9:899–909

    CAS  PubMed  Google Scholar 

  26. Connolly J.M., Gilhooly E.M., Rose D.P. 1999. Effects of reduced dietary linoleic acid intake, alone or combined with an algal source of docosahexaenoic acid, on MDA-MB-231 breast cancer cell growth and apoptosis in nude mice. Nutr. Cancer 35:44–49

    CAS  PubMed  Google Scholar 

  27. Corcoran M., Stetler-Stevenson W., DeWitt D., Whal L. 1994. Effect of cholera toxin and pertussis toxin on prostaglandin H synthase-2, prostaglandin E2 and matrix metalloproteinase production by human monocytes. Arch. Biochem. Biophys. 310:481–488

    Article  CAS  PubMed  Google Scholar 

  28. Crawford D.L., Powers D.A. 1992. Evolutionary adaptation to different thermal environment via transcriptional regulation. Mol. Biol. Evol. 9:806–813

    CAS  PubMed  Google Scholar 

  29. Culp B.R., Titus B.G., Lands W.E. 1979. Inhibition of prostaglandin biosynthesis by eicosapentaenoic acid. Prostaglandins Med. 3:269–278

    Article  CAS  PubMed  Google Scholar 

  30. Cybulsky M.J., Iiyama K., Li H., Zhu S., Chen M., Iiyama M., Davis V.M., Gutierrez-Ramos J.-C., Connelly P.W., Milstone D.S. 2001. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J. Clin. Invest. 107:1255–1262

    CAS  PubMed  Google Scholar 

  31. De Caterina R., Bernini W., Carluccio M., Liao J., Libby P. 1998. Structural requirements for inhibition of cytokine-induced endothelial activation by unsaturated fatty acids. J. Lipid Res. 39:1062–1070

    PubMed  Google Scholar 

  32. De Caterina R., Cybulsky M.A., Clinton S.K., Gimbrone M.A., Jr., Libby P. 1995. Omega-3 fatty acids and endothelial leukocyte adhesion molecules. Prostagl. Leukotr. Ess. Fatty Acids. 52:191–195

    Google Scholar 

  33. De Caterina R., Cybulsky M.I., Clinton S.K., Gimbrone M.A., Jr., Libby P. 1994. The omega-3 fatty acid docosahexaenoate reduces cytokine-induced expression of pro-atherogenic and pro-inflammatory proteins in human endothelial cells. Arterioscl. Thromb. 14:1829–1836

    CAS  PubMed  Google Scholar 

  34. De Caterina R., Giannessi D., Mazzone A., Bernini W., Lazzerini G., Maffei S., Cerri M., Salvatore L., Weksler B. 1990. Vascular prostacyclin is increased in patients ingesting omega-3 polyunsaturated fatty acids before coronary artery bypass surgery. Circulation 82:428–438

    Google Scholar 

  35. De Caterina, R., Gimbrone, M.A., Jr. 1995. Leukocyte-endothelial interactions and the pathogenesis of atherosclerosis. In: n-3 Fatty Acids — Prevention and Treatment in Vascular Disease. Kristensen, SD., Schmidt, EB., De Caterina, R., Endres, S., eds. pp 9–24, Springer Verlag

  36. De Caterina R., Madonna R., Hassan J., Procopio A.D. 2001. Nutrients and gene expression. World Rev. Nutr. Diet 89:23–52

    PubMed  Google Scholar 

  37. De Caterina R., Zampolli A. 2001. n-3 fatty acids:antiatherosclerotic effects. Lipids 36:S69–S78

    PubMed  Google Scholar 

  38. De Caterina R., Zampolli A. 2004. From asthma to atherosclerosis — 5-lipoxygenase, leukotrienes, and inflammation. N. Engl. J. Med. 350:4–7

    PubMed  Google Scholar 

  39. De Caterina, R., Zampolli, A., Del Turco, S., Madonna, R., Massaro, M. 2006. Nutritional mechanisms that influence cardiovascular disease. Am. J. Clin. Nutr. in press

  40. Dixon D.A., Kaplan C.D., McIntyre T.M., Zimmerman G.A., Prescott S.M. 2000. Post-transcriptional control of cyclooxygenase-2 gene expression. The role of the 3′-untranslated region. J. Biol. Chem. 275:11750–11757

    Article  CAS  PubMed  Google Scholar 

  41. Dollery C.M., Owen C.A., Sukhova G.K., Krettek A., Shapiro S.D., Libby P. 2003. Neutrophil elastase in human atherosclerotic plaques: production by macrophages. Circulation 107:2829–2836

    Article  CAS  PubMed  Google Scholar 

  42. Dyerberg J., Bang H.O. 1978. Dietary fat and thrombosis. Lancet 1:152

    CAS  PubMed  Google Scholar 

  43. Dyerberg J., Bang H.O., Stofferson E., Moncada S., Vane J.R. 1978. Eicosapentaenoic acid and prevention of thrombosis and atherosclerosis. Lancet 117–119

    Google Scholar 

  44. Egan K.M., Lawson J.A., Fries S., Koller B., Rader D.J., Smyth E.M., Fitzgerald G.A. 2004. COX-2-derived prostacyclin confers atheroprotection on female mice. Science 306:1954–1957

    Article  Google Scholar 

  45. Endres S., Ghorbani R., Kelley V.E., Georgilis K., Lonneman G., van der Meer J.W.M., Cannon J.G., Rogers T.S., Klemper M.S., Weber P.C., Schaefer E.J., Woff S.M., Dinarello C.A. 1989. The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N. Engl. J. Med. 320:265–271

    CAS  PubMed  Google Scholar 

  46. Eritsland J., Arnesen H., Grønseth K., Field N.B., Abdelnoor M. 1994. Effect of supplementation with n-3 fatty acids on graft patency in patients undergoing coronary artery bypass operation. Results from the SHOT study. Eur Heart J. 15:29

    Google Scholar 

  47. Falk E., Shah P.K., Fuster V. 1995. Coronary plaque disruption. Circulation 92:657–671

    CAS  PubMed  Google Scholar 

  48. Fischer S., von, Schacky C., Siess W., Strasser T., Weber P.C. 1984. Uptake, release and metabolism of docosahexaenoic acid (DHA, c22:6 omega 3) in human platelets and neutrophils. Biochem. Biophys. Res. Commun. 120:907–918

    Article  CAS  PubMed  Google Scholar 

  49. Fitzgerald G.A. 2004. Coxibs and cardiovascular disease. N. Engl. J. Med. 351:1709–1711

    Article  CAS  PubMed  Google Scholar 

  50. Furberg C.D., Psaty B.M., FitzGerald G.A. 2005. Parecoxib, valdecoxib, and cardiovascular risk. Circulation 111:249

    Article  PubMed  Google Scholar 

  51. Galis Z.S., Muszynski M., Sukhova G.K., Simon-Morrissey E., Libby P. 1995. Enhanced expression of vascular matrix metalloproteinases induced in vitro by cytokines and in regions of human atherosclerotic lesions. Ann. N. Y. Acad. Sci. 748:501–507

    CAS  PubMed  Google Scholar 

  52. Galis Z.S., Muszynski M., Sukhova G.K., Simon-Morrissey E., Unemori E.N., Lark M.W., Amento E., Libby P. 1994. Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ. Res. 75:181–189

    CAS  PubMed  Google Scholar 

  53. Galis Z.S., Sukhova G.K., Kranzhofer R., Clark S., Libby P. 1995. Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases. Proc. Natl. Acad. Sci. USA 92:402–406

    CAS  PubMed  Google Scholar 

  54. Galis Z.S., Sukhova G.K., Lark M.W., Libby P. 1994. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J. Clin. Invest. 94:2493–2503

    CAS  PubMed  Google Scholar 

  55. Garcia-Touchard A., Henry T.D., Sangiorgi G., Spagnoli L.G., Mauriello A., Conover C., Schwartz R.S. 2005. Extracellular proteases in atherosclerosis and restenosis. Arterioscler. Thromb. Vasc. Biol. 25:1119–1127

    CAS  PubMed  Google Scholar 

  56. Gartenberg M.R., Wang J.C. 1992. Positive supercoiling of DNA greatly diminishes mRNA synthesis in yeast. Proc. Natl. Acad. Sci. USA 89:11461–11465

    CAS  PubMed  Google Scholar 

  57. Geiringer E. 1951. Intimal vascularization and atherosclerosis. J. Pathol. Bacteriol. 63:201–211

    Article  CAS  PubMed  Google Scholar 

  58. Gilbert M., Dalloz S., Maclouf J., Lagarde M. 1999. Differential effects of long chain n-3 fatty acids on the expression of PGH synthase isoforms in bovine aortic endothelial cells. Prostaglandins Leukot. Essent. Fatty Acids. 60:363–365

    Article  CAS  PubMed  Google Scholar 

  59. Gong B., Chen Q., Almasan A. 1998. Ionizing radiation stimulates mitochondrial gene expression and activity. Radiat. Res. 150:505–512

    CAS  PubMed  Google Scholar 

  60. Guan Z., Buckman S.Y., Pentiand A.P., Templeton D.J., Morrison A.R. 1998. Induction of cyclooxygenase-2 by the activated MEKK1→SEK1/MKK4→p38 mitogen-activated protein kinase pathway. J. Biol. Chem. 273:12901–12908

    CAS  PubMed  Google Scholar 

  61. Habib A., Creminon C., Frobert Y., Grassi J., Pradelles P., Maclouf J. 1993. Demonstration of an inducible cyclooxygenase in human endothelial cells using antibodies raised against the carboxyl-terminal region of the cyclooxygenase-2. J. Biol. Chem. 268:23448–23454

    CAS  PubMed  Google Scholar 

  62. Halpert I., Sires U.I., Roby J.D., Potter-Perigo S., Wight T.N., Shapiro S.D., Welgus H.G., Wickline S.A., Parks W.C. 1996. Matrilysin is expressed by lipid-laden macrophages at sites of potential rupture in atherosclerotic lesions and localizes to areas of versican deposition, a proteoglycan substrate for the enzyme. Proc. Natl. Acad. Sci. USA 93:9748–9753

    Article  CAS  PubMed  Google Scholar 

  63. Harris M.A., Hansen R.A., Vidsudhiphan P., Koslo J.L., Thomas J.B., Watkins B.A., Allen K.G. 2001. Effects of conjugated linoleic acids and docosahexaenoic acid on rat liver and reproductive tissue fatty acids, prostaglandins and matrix metalloproteinase production. Prostaglandins Leukot. Essent. Fatty Acids. 65:23–29

    Article  CAS  PubMed  Google Scholar 

  64. Hennecke H. 1990. Regulation of bacterial gene expression by metal-protein complexes. Mol. Microbiol. 4:1621–1628

    CAS  PubMed  Google Scholar 

  65. Herron G.S., Banda M.J., Clark E.J., Gavrilovic J., Werb Z. 1986. Secretion of metalloproteinases by stimulated capillary endothelial cells. II. Expression of collagenase and stromelysin activities is regulated by endogenous inhibitors. J. Biol. Chem. 261:2814–2818

    CAS  PubMed  Google Scholar 

  66. Higgins C.F., Peltz S.W., Jacobson A. 1992. Turnover of mRNA in prokaryotes and lower eukaryotes. Curr. Opin. Genet. Dev. 2:739–747

    Article  CAS  PubMed  Google Scholar 

  67. Hirai A., Hamazaki T., Terano T. 1980. Eicosapentaenoic acid and platelet function in Japanese. Lancet 2:1132–1133

    CAS  PubMed  Google Scholar 

  68. Hirai K., Ezumi Y., Nishida E., Uchiyama T., Takayama H. 1999. Comparative study of vanadate- and phorbol ester-induced cyclo-oxygenase-2 expression in human endothelial cells. Thromb. Haemost. 82:1545–1552

    CAS  PubMed  Google Scholar 

  69. Hong B.K., Kwon H.M., Lee B.K., Kim D., Kim I.J., Kang S.M., Jang Y., Cho S.H., Kim H.K., Jang B.C., Cho S.Y., Kim H.S., Kim M.S., Kwon H.C., Lee K. 2000. Coexpression of cyclooxygenase-2 and matrix metalloproteinases in human aortic atherosclerotic lesions. Yonsei Med. J. 41:82–88

    CAS  PubMed  Google Scholar 

  70. Inaba T., Nagano Y., Reid J.B., Sasaki Y. 2000. A 12 bp cis-regulatory element sufficient to confer dark-inducible and light down expression to a minimal promoter in pea. J. Biol. Chem. 88:22056–22060

    Google Scholar 

  71. Jones D.A., Carlton D.P., McIntyre T.M., Zimmerman G.A., Prescott S.M. 1993. Molecular cloning of human prostaglandin endoperoxide synthase type II and demonstration of expression in response to cytokines. J. Biol. Chem. 268:9049–9054

    CAS  PubMed  Google Scholar 

  72. Jones M.K., Wang H., Peskar B.M., Levin E, Itani R.M., Sarfeh I.J., Tarnawski A.S. 1999. Inhibition of angiogenesis by nonsteroidal anti-inflammatory drugs: insight into mechanisms and implications for cancer growth and ulcer healing. Nat. Med. 5:1418–1423

    CAS  PubMed  Google Scholar 

  73. Kagawa Y., Nishizawa M., Suzuki M. 1982. Eicosapolyenoic acid of serum lipids of Japanese islanders with low incidence of cardiovascular diseases. J. Nutr. Sci. Vitaminol. (Tokyo). 28:441–453

    CAS  Google Scholar 

  74. Kanayasu T., Morita I., Nakao-Hayashi J., Asuwa N., Fujisawa C., Ishii T., Ito H., Murota S. 1991. Eicosapentaenoic acid inhibits tube formation of vascular endothelial cells in vitro. Lipids. 26:271–276

    CAS  PubMed  Google Scholar 

  75. Kromann N., Green A. 1980. Epidemiological studies in the Upernavik district, Greenland. Acta Med. Scand. 208:401–406

    CAS  PubMed  Google Scholar 

  76. Kromhout D., Bosschieter E.B., De Lezenne Coulander C. 1985. The inverse relation between fish consumption and 20-year mortality from coronary heart disease. N. Engl. J. Med. 312:1205–1209

    CAS  PubMed  Google Scholar 

  77. Kumamoto M., Nakashima Y., Sueishi K. 1995. Intimal neovascularization in human coronary atherosclerosis: its origin and pathophysiologieal significance. Hum. Pathol. 26:450–456

    Article  CAS  PubMed  Google Scholar 

  78. Kuwano T., Nakao S., Yamamoto H., Tsuneyoshi M., Yamamoto T., Kuwano M., Ono M. 2004. Cyclooxygenase 2 is a key enzyme for inflammatory cytokine-induced angiogenesis. FASEB J. 18:300–310

    Article  CAS  PubMed  Google Scholar 

  79. Lee J.Y., Plakidas A., Lee W.H., Heikkinen A., Chanmugam P., Bray G., Hwang D.H. 2003. Differential modulation of Toll-like receptors by fatty acids: preferential inhibition by n-3 polyunsaturated fatty acids. J. Lipid Res. 44:479–486

    CAS  PubMed  Google Scholar 

  80. Lee J.Y., Ye J., Gao Z., Youn H.S., Lee W.H., Zhao L., Sizemore N., Hwang D.H. 2003. Reciprocal modulation of Toll-like receptor-4 signaling pathways involving MyD88 and phosphatidylinositol 3-kinase/AKT by saturated and polyunsaturated fatty acids. J. Biol. Chem. 278:37041–37051

    CAS  PubMed  Google Scholar 

  81. Lewin B. 1997. Genes VI. Oxford University Press, Oxford, New York, Tokyo

    Google Scholar 

  82. Lewis R.A., Austen K.F., Soberman R.J. 1990. Leukotrienes and other products of the 5-lipoxygenase pathway. Biochemistry and relation to pathobiology in human diseases. N. Engl. J. Med. 323:645–655

    Google Scholar 

  83. Li Q., Wrange O., Eriksson P. 1997. The role of chromatin in transcriptional regulation. Int. J. Biochem. Cell Biol. 29:731–742

    Article  CAS  PubMed  Google Scholar 

  84. Madri J.A., Graesser D., Haas T. 1996. The roles of adhesion molecules and proteinases in lymphocyte transendothelial migration. Biochem. Cell Biol. 74:749–757

    CAS  PubMed  Google Scholar 

  85. Manger I.D., Relman D.A. 2000. How the host ‘sees’ pathogen: global gene expression responses to infection. Curr. Opin. Immunol. 12:215–218

    Article  CAS  PubMed  Google Scholar 

  86. McCarthy M.J., Loftus I.M., Thompson M.M., Jones L., London N.J., Bell P.R., Naylor A.R., Brindle N.P. 1999. Angiogenesis and the atherosclerotic carotid plaque: an association between symptomatology and plaque morphology. J. Vasc. Surg. 30:261–268

    Article  CAS  PubMed  Google Scholar 

  87. McMillan W.D., Patterson B.K., Keen R.R., Shively V.P., Cipollone M., Pearce W.H. 1995. In situ localization and quantification of mRNA for 92-kD type IV collagenase and its inhibitor in aneurysmal, occlusive, and normal aorta. Arterioseler.Thromb. Vasc. Biol. 15:1139–1144

    CAS  PubMed  Google Scholar 

  88. Middaugh J.P. 1990. Cardiovascular deaths among Alaskan natives 1980–1986. Am. J. Public Health 80:282–285

    CAS  PubMed  Google Scholar 

  89. Mofidi R., Crotty T.B., McCarthy P., Sheehan S.J., Mehigan D., Keaveny T.V. 2001. Association between plaque instability, angiogenesis and symptomatic carotid occlusive disease. Br. J. Surg. 88:945–950

    CAS  PubMed  Google Scholar 

  90. Moulton K.S. 2002. Plaque angiogenesis: its functions and regulation. Cold Spring Harb. Symp. Quant. Biol. 67:471–482

    Article  CAS  PubMed  Google Scholar 

  91. Nagase H. 1997. Activation mechanisms of matrix metalloproteinases. Biol. Chem. 378:151–160

    CAS  PubMed  Google Scholar 

  92. Nagase H., Woessner J.F. Jr. 1999. Matrix metalloproteinases. J. Biol. Chem. 274:21491–21494

    Article  CAS  PubMed  Google Scholar 

  93. Nakagawa K., Chen Y.X., Ishibashi H., Yonemitsu Y., Murata T., Hata Y., Nakashima Y., Sueishi K. 2000. Angiogenesis and its regulation: roles of vascular endothelial cell growth factor. Semin. Thromb. Hemost. 26:61–66

    Article  CAS  PubMed  Google Scholar 

  94. Newell-Price J., Clark A.J., King P. 2000. DNA methylation and silencing of gene expression. Trends Endocrinol. Metab. 11:142–148

    CAS  PubMed  Google Scholar 

  95. Newman W.P., Middaugh J.P., Propst M.T., Rogers D.R. 1993. Atherosclerosis in Alaska natives and non-natives. Lancet 341:1056–1057

    Article  CAS  PubMed  Google Scholar 

  96. O’Brien K.D., Alien M.D., McDonald T.O., Chait A., Harlan J.M., Fishbein D., McCarty J., Ferguson M., Hudkins K., Benjamin C.D., et al. 1993. Vascular cell adhesion molecule-1 is expressed in human coronary atherosclerotic plaques. Implications for the mode of progression of advanced coronary atherosclerosis. J. Clin. Invest. 92:945–951

    CAS  PubMed  Google Scholar 

  97. O’Brien K.D., McDonald T.O., Chait A., Alien M.D., Alpers C.E. 1996. Neovascular expression of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in human atherosclerosis and their relation to intimal leukocyte content. Circulation 93:672–682

    CAS  PubMed  Google Scholar 

  98. Okie S. 2005. Raising the safety bar—the FDA’s coxib meeting. N. Engl. J. Med. 352:1283–1285

    CAS  PubMed  Google Scholar 

  99. Pratico D., Tillmann C., Zhang Z.B., Li H., FitzGerald G.A. 2001. Acceleration of atherogenesis by COX-1-dependent prostanoid formation in low density lipoprotein receptor knockout mice. Proc. Natl. Acad. Sci. USA 98:3358–33631

    Article  CAS  PubMed  Google Scholar 

  100. Rajavashisth T.B., Liao J.K., Galis Z.S., Tripathi S., Laufs U., Tripathi J., Chai N.N., Xu X.P., Jovinge S., Shah P.K., Libby P. 1999. Inflammatory cytokines and oxidized low density lipoproteins increase endothelial cell expression of membrane type 1-matrix metalloproteinase. J. Biol. Chem. 274:11924–11929

    Article  CAS  PubMed  Google Scholar 

  101. Rajavashisth T.B., Xu X.P., Jovinge S., Meisel S., Xu X.O., Chai N.N., Fishbein M.C., Kaul S., Cercek B., Sharifi B., Shah P.K. 1999. Membrane type 1 matrix metalloproteinase expression in human atherosclerotic plaques: evidence for activation by proinflammatory mediators. Circulation 99:3103–3109

    CAS  PubMed  Google Scholar 

  102. Rikitake Y., Hirata K., Kawashima S., Takeuchi S., Shimokawa Y., Kojima Y., Inoue N., Yokoyama M. 2001. Signaling mechanism underlying COX-2 induction by lysophosphatidylcholine. Biochem. Biophys. Res. Commun. 281:1291–1297

    Article  CAS  PubMed  Google Scholar 

  103. Romanic A.M., Madri J.A. 1994. The induction of 72-kD gelatinase in T cells upon adhesion to endothelial cells is VCAM-1 dependent. J. Cell Biol. 125:1165–1178

    Article  CAS  PubMed  Google Scholar 

  104. Rose D.P., Connolly J.M. 1999. Antiangiogenicity of docosahexaenoic acid and its role in the suppression of breast cancer cell growth in nude mice. Int. J. Oncol. 15:1011–1015

    CAS  PubMed  Google Scholar 

  105. Rose D.P., Connolly J.M., Coleman M. 1996. Effect of omega-3 fatty acids on the progression of metastases after the surgical excision of human breast cancer cell solid tumors growing in nude mice. Clin. Cancer Res. 2:1751–1756

    CAS  PubMed  Google Scholar 

  106. Rott D., Zhu J., Burnett M.S., Zhou Y.F., Zalles-Ganley A., Ogunmakinwa J., Epstein S.E. 2003. Effects of MF-tricyclic, a selective cyclooxygenase-2 inhibitor, on atherosclerosis progression and susceptibility to cytomegalovirus replication in apolipoprotein-E knockout mice. J. Am. Coll. Cardiol. 41:1812–1819

    CAS  PubMed  Google Scholar 

  107. Rueckschloss U., Duerrschmidt N., Morawietz H. 2003. NADPH oxidase in endothelial cells: impact on atherosclerosis. Antioxid. Redox Signal 5:171–180

    Article  CAS  PubMed  Google Scholar 

  108. Schnaper H.W., Grant D.S., Stetler-Stevenson W.G., Fridman R., D’Orazi G., Murphy A.N., Bird R.E., Hoythya M., Fuerst T.R., French D.L., et al. 1993. Type IV collagenase(s) and TIMPs modulate endothelial cell morphogenesis in vitro. J. Cell Physiol. 156:235–246

    Article  CAS  PubMed  Google Scholar 

  109. Schonbeck U., Mach F., Sukhova G.K., Atkinson E., Levesque E., Herman M., Graber P., Basset P., Libby P. 1999. Expression of stromelysin-3 in atherosclerotic lesions: regulation via CD40-CD40 ligand signaling in vitro and in vivo. J. Exp. Med. 189:843–853

    Article  CAS  PubMed  Google Scholar 

  110. Schonbeck U., Sukhova G.K., Graber P., Coulter S., Libby P. 1999. Augmented expression of cyclooxygenase-2 in human atherosclerotic lesions. Am. J. Pathol. 155:1281–1291

    CAS  PubMed  Google Scholar 

  111. Seals D.F., Courtneidge S.A. 2003. The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev. 17:7–30

    Article  CAS  PubMed  Google Scholar 

  112. Shah P.K., Falk E., Badimon J.J., Fernandez-Ortiz A., Mailhac A., Villareal-Levy G., Fallon J.T., Regnstrom J., Fuster V. 1995. Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques. Potential role of matrix-degrading metalloproteinases and implications for plaque rupture. Circulation 92:1565–1569

    CAS  PubMed  Google Scholar 

  113. Shekelle R., Missel L., Paul O., MacMillan-Schryock A., Stamler J. 1985. Fish consumption and mortality from coronary heart disease (Letter). N. Engl. J. Med. 313:820

    Google Scholar 

  114. Shtivelband M.I., Juneja H.S., Lee S., Wu K.K. 2003. Aspirin and salicylate inhibit colon cancer medium- and VEGF-induced endothelial tube formation: correlation with suppression of cyclooxygenase-2 expression. J. Thromb. Haemost. 1:2225–2233

    Article  CAS  PubMed  Google Scholar 

  115. Smith G.R. 1981. DNA supercoiling: another level for regulating gene expression. Cell. 24:599–600

    CAS  PubMed  Google Scholar 

  116. Smith W.L., Garavito R.M., DeWitt D.L. 1996. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J. Biol Chem. 271:33157–33160

    CAS  PubMed  Google Scholar 

  117. Soei, L., Lamers, J., Sassen, L., van Tol, A., Scheek, L., Dekkers, D., van Meegen, J., Verdouw, P. Fish oil: a modulator of experimental atherosclerosis in animals. In: n-3 Fatty Acids: Prevention and Treatment in Vascular Disease. Kristensen, S., Endres, S., De Caterina, R., Schmidt, E., eds. pp 77–84. Springer Verlag

  118. Spector A.A., Kaduce T.L., Figard P.H., Norton K.C., Hoak J.C., Czervionke R.L. 1983. Eicosapentaenoic acid and prostacyclin production by cultured human endothelial cells. J. Lipid Res. 24:1595–1604

    CAS  PubMed  Google Scholar 

  119. Stary H.C., Chandler A.B., Dinsmore R.E., Fuster V., Glagov S., Insull W., Jr., Rosenfeld M.E., Schwartz C.J., Wagner W.D., Wissler R.W. 1995. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 92:1355–1374

    CAS  PubMed  Google Scholar 

  120. Stemme V., Swedenborg J., Claesson H., Hansson G.K. 2000. Expression of cyclo-oxygenase-2 in human atherosclerotic carotid arteries. Eur. J. Vasc. Endovasc. Surg. 20:146–152

    Article  CAS  PubMed  Google Scholar 

  121. Stocker V., Grams F., Baumann U., Reinemer P., Gomis-Ruth F.X., McKay D.B., Bode W. 1995. The metzincins—topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci. 4:823–840

    CAS  PubMed  Google Scholar 

  122. Sukhova G.K., Schonbeck U., Rabkin E., Schoen F.J., Poole A.R., Billinghurst R.C., Libby P. 1999. Evidence for increased collagenolysis by interstitial collagenases-1 and -3 in vulnerable human atheromatous plaques. Circulation 99:2503–2509

    CAS  PubMed  Google Scholar 

  123. Suzuki I., Iigo M., Ishikawa C., Kuhara T., Asamoto M., Kunimoto T., Moore M.A., Yazawa K., Araki E., Tsuda H. 1997. Inhibitory effects of oleic and docosahexaenoic acids on lung metastasis by colon-carcinoma-26 cells are associated with reduced matrix metalloproteinase-2 and -9 activities. Int. J. Cancer. 73:607–612

    CAS  PubMed  Google Scholar 

  124. Tanabe T., Tohnai N. 2002. Cyclooxygenase isozymes and their gene structures and expression. Prostaglandins Other Lipid Mediat. 68–69:95–114

    PubMed  Google Scholar 

  125. The GISSI-Prevenzione Investigators: 1999. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamins E after myocardial infarction: results of the GISSI-Prevenzione trial. Lancet 354:447–455

    Google Scholar 

  126. Thies F., Garry J.M., Yaqoob P., Rerkasem K., Williams J., Shearman C.P., Gallagher P.J., Calder P.C., Grimble R.F. 2003. Association of n-3 polyunsaturated fatty acids with stability of atherosclerotic plaques: a randomised controlled trial. Lancet 361:477–485

    Article  CAS  PubMed  Google Scholar 

  127. Topol E.J. 2004. Failing the public health—rofecoxib, Merck, and the FDA. N. Engl. J. Med. 351:1707–1709

    Article  CAS  PubMed  Google Scholar 

  128. Tsuji M., Murota S.I., Morita I. 2003. Docosapentaenoic acid (22:5, n-3) suppressed tube-forming activity in endothelial cells induced by vascular endothelial growth factor. Prostaglandins Leukot. Essent. Fatty Acids 68:337–342

    Article  CAS  PubMed  Google Scholar 

  129. van der Wal A.C., Decker A.E., van der Loos C.M., Das P.K. 1994. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 89:36–44

    CAS  PubMed  Google Scholar 

  130. Verderber E., Lucast L.J., Van Dehy J.A., Cozart P., Etter J.B. 1997. Role of the hemeA gene product and delta aminolevulinic acid in regulation of Escherichia Coli heme synthasis. J. Bacteriol. 179:4583–4590

    CAS  PubMed  Google Scholar 

  131. Weber C., Erl W., Pietsch A., Danesch U., Weber P. 1995. Docosahexaenoic acid selectively attenuates induction of vascular cell adhesion molecule-1 and subsequent monocytic cell adhesion to human endothelial cells stimulated by tumor necrosis factor-alpha. Arterioscler. Thromb. Vasc. Biol. 15:622–628

    CAS  PubMed  Google Scholar 

  132. Winternitz, M., Thomas, R., LeCompte, P. 1938. The Biology of Atherosclerosis. Thomas, C.C., ed. Springfield

  133. Yang S.P., Morita I., Murota S.I. 1998. Eicosapentaenoic acid attenuates vascular endothelial growth factor-induced proliferation via inhibiting Flk-1 receptor expression in bovine carotid artery endothelial cells. J. Cell Physiol. 176:342–349

    Article  CAS  PubMed  Google Scholar 

  134. Zhang Y., Cliff W.J., Schoefl G.I., Higgins G. 1993. Immunohistochemical study of intimal microvessels in coronary atherosclerosis. Am. J. Pathol. 143:164–172

    CAS  PubMed  Google Scholar 

  135. Zucker S., Mirza H., Conner C.E., Lorenz A.F., Drews M.H., Bahou W.F., Jesty J. 1998. Vascular endothelial growth factor induces tissue factor and matrix metalloproteinase production in endothelial cells: conversion of prothrombin to thrombin results in progelatinase A activation and cell proliferation. Int. J. Cancer. 75:780–786

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We are indebted to all our former and current collaborators at the Laboratory for Thrombosis and Vascular Research at the CNR Institute of Clinical Physiology in Pisa, the Laboratory for Atherosclerosis Research at the CNR Institute of Clinical Physiology in Lecce, and the Experimental Cardiology Laboratory at the “G. d’Annunzio” Foundation in Chieti, for the experimental data on which most of the considerations here highlighted are based.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. De Caterina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Caterina, R., Massaro, M. Omega-3 Fatty Acids and the Regulation of Expression of Endothelial Pro-Atherogenic and Pro-Inflammatory Genes. J Membrane Biol 206, 103–116 (2005). https://doi.org/10.1007/s00232-005-0783-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0783-2

Keywords

Navigation