Skip to main content
Log in

Different arrangements of simplified models to predict effective thermal conductivity of open-cell foams

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

It is often desirable to predict the effective thermal conductivity (ETC) of a homogenous material like open-cell foams based on its composition, particularly when variations in composition are expected. A combination of five fundamental simplified thermal conductivity bounds and models (series, parallel, Hashin–Shtrikman, effective medium theory, and reciprocity models) is proposed to predict ETC of open-cell foams. Usually, these models use a parameter as the weighted mean to account the proportion of each bound arranged in arithmetic and geometric schemes. Based on ETC data obtained on numerous virtual Kelvin-like foam samples, the dependence of this parameter has been deduced as a function of morphology and phase thermal conductivity ratio. Various effective thermal conductivity correlations are derived based on material properties and foam structure. This is valid for open-cell foams filled with any arbitrary working fluid over a solid conductivity of materials range (\(\lambda_{s} /\lambda_{f}\) = 10–30,000) and over a wide range of porosity (0.60 \(< \varepsilon_{o} <\) 0.95). Arrangement of series and parallel models together using the simplest models for both, arithmetic and geometric schemes, is found to predict excellent results among all the generic combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

µCT:

Micro-computed tomography

ETC:

Effective thermal conductivity

EMT:

Effective medium theory

HS:

Hashin–Shtrikman

LBM:

Lattice Boltzmann method

RT:

Reciprocity theorem

\(A\,or\,R\) :

Side length of strut shape or radius of strut shape (mm)

\(L_{c}\) :

Node-to-node length (mm)

\(L_{s}\) :

Strut length (mm)

\(F\) :

Correlation factor (Eq. 30)

\(R_{eq}\) :

Equivalent circular strut radius (mm)

\(\varepsilon_{o}\) :

Open porosity

\(\varepsilon_{t}\) :

Total porosity

\(\alpha_{eq}\) :

Ratio of equivalent circular strut radius to node-to-node length

\(\beta\) :

Ratio of strut length to node-to-node length

\(\delta\) :

Functional parameter in arithmetic scheme (Eq. 7)

\(\delta^{\prime }\) :

Functional parameter in geometric scheme (Eq. 8)

\(\psi\) :

Dimensionless geometrical parameter (Eq. 23)

\(\eta\) :

Dimensionless fitting parameter (Eqs. 27 and 29)

\(\eta^{\prime }\) :

Dimensionless fitting parameter (Eq. 28)

\(\lambda_{s}\) :

Intrinsic solid phase conductivity of foam (W m−1 K−1)

\(\lambda_{s}^{B}\) :

Solid/Bulk phase conductivity of foam material (W m−1 K−1)

\(\lambda_{f}\) :

Fluid phase conductivity (W m−1 K−1)

\(\lambda_{eff}\) :

Effective thermal conductivity (W m−1 K−1)

\(\lambda_{parallel}\) :

Effective parallel thermal conductivity (Eq. 1) (W m−1 K−1)

\(\lambda_{series}\) :

Effective series thermal conductivity (Eq. 2) (W m−1 K−1)

\(\lambda_{HS, Upper}\) :

HS upper bound thermal conductivity (Eq. 3) (W m−1 K−1)

\(\lambda_{HS, Lower}\) :

HS lower bound thermal conductivity (Eq. 4) (W m−1 K−1)

\(\lambda_{EMT}\) :

Effective medium theory thermal conductivity (Eq. 5) (W m−1 K−1)

\(\lambda_{RM}\) :

Reciprocity model (Eq. 6) (W m−1 K−1)

References

  1. Calmidi VV, Mahajan RL (1999) The effective thermal conductivity of high porosity fibrous metal foams. ASME J Heat Transf 121(2):466–471

    Article  Google Scholar 

  2. Bhattacharya A, Calmidi VV, Mahajan RL (2002) Thermophysical properties of high porosity metal foams. Int J Heat Mass Transf 45(5):1017–1031

    Article  MATH  Google Scholar 

  3. Solorzano E, Reglero JA, Rodriguez-Perez MA, Lehmhus D, Wichmann MA, De Saja JA (2008) An experimental study on the thermal conductivity of aluminium foams by using the transient plane source method. Int J Heat Mass Transf 51:6259–6267

    Article  Google Scholar 

  4. Dietrich B, Schell G, Bucharsky EC, Oberacker R, Hoffmann MJ, Schabel W, Kind M, Martin H (2010) Determination of the thermal properties of ceramic sponges. Int J Heat Mass Transf 53(1):198–205

    Article  Google Scholar 

  5. Yang XH, Bai JX, Yan HB, Kuang JJ, Lu TJ, Kim T (2014) An analytical unit cell model for the effective thermal conductivity of high porosity open-cell metal foams. Transp Porous Media 102:403–426

    Article  Google Scholar 

  6. Wang M, Pan N (2008) Modeling and prediction of the effective thermal conductivity of random open-cell porous foams. Int J Heat Mass Transf 51(5–6):1325–1331

    Article  MATH  Google Scholar 

  7. Coquard R, Rochais D, Baillis D (2012) Conductive and radiative heat transfer in ceramic and metal foams at fire temperatures. Fire Technol 48:699–732

    Article  MATH  Google Scholar 

  8. Mendes MAA, Talukdar P, Ray S, Trimis D (2014) Detailed and simplified models for evaluation of effective thermal conductivity of open-cell porous foams at high temperatures in presence of thermal radiation. Int J Heat Mass Transf 68:612–624

    Article  Google Scholar 

  9. Miettinen L, Kekalainen P, Turpeinen T, Hyvaluoma J, Merikoski J, Timonen J (2012) Dependence of thermal conductivity on structural parameters in porous samples. AIP Adv 2:012101–012115

    Article  Google Scholar 

  10. Kumar P, Topin F, Vicente J (2014) Determination of effective thermal conductivity from geometrical properties: application to open cell foams. Int J Therm Sci 81:13–28

    Article  Google Scholar 

  11. Kumar P, Topin F (2014) Simultaneous determination of intrinsic solid phase conductivity and effective thermal conductivity of Kelvin like foams. Appl Therm Eng 71(1):536–547

    Article  Google Scholar 

  12. Kumar P, Topin F (2014) The geometric and thermohydraulic characterization of ceramic foams: an analytical approach. Acta Mater 75:273–286

    Article  Google Scholar 

  13. Vicente J, Topin F, Daurelle JV, Rigollet F (2006) Thermal conductivity of metallic foam: simulation on real X-ray tomographied porous medium and photothermal experiments. In: Proceedings of IHTC 13, Sydney

  14. Coquard R, Baillis D (2009) Numerical investigation of conductive heat transfer in high-porosity foams. Acta Mater 57(18):5466–5479

    Article  Google Scholar 

  15. Bodla KK, Murthy JY, Garimella SV (2010) Resistance network-based thermal conductivity model for metal foams. Comput Mater Sci 50:622–632

    Article  Google Scholar 

  16. Randrianalisoa J, Coquard R, Baillis D (2013) Microscale direct calculation of solid phase conductivity of Voronoi’s foams. J Porous Media 16(5):411–426

    Article  Google Scholar 

  17. Mendes AAM, Ray S, Trimis D (2013) A simple and efficient method for the evaluation of effective thermal conductivity of open-cell foam-like structures. Int J Heat Mass Transf 66:412–422

    Article  Google Scholar 

  18. Mendes AAM, Ray S, Trimis D (2014) An improved model for the effective thermal conductivity of open-cell porous foams. Int J Heat Mass Transf 75:224–230

    Article  Google Scholar 

  19. Ranut P, Nobile E, Mancini L (2014) High resolution X-ray microtomography-based CFD simulation for the characterization of flow permeability and effective thermal conductivity of aluminum metal foams. Exp Therm Fluid Sci. doi:10.1016/j.expthermflusci.2014.10.018

    Google Scholar 

  20. Wulf R, Mendes AAM, Skibina V, Al-Zoubi A, Trimis D, Ray S, Gross U (2014) Experimental and numerical determination of effective thermal conductivity of open cell FeCrAl-alloy metal foams. Int J Therm Sci 86:95–103

    Article  Google Scholar 

  21. Krishnan S, Garimella S, Murthy JY (2008) Simulation of thermal transport in open-cell metal foams: effects of periodic unit-cell structure. J Heat Transfer 130(2):24503–24507

    Article  Google Scholar 

  22. Druma A, Kharil Alam M, Druma C (2006) Surface area and conductivity of open-cell carbon foams. J Miner Mater Charact Eng 5:73–86

    Google Scholar 

  23. Boomsma K, Poulikakos D (2001) On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam. Int J Heat Mass Transf 44:827–836

    Article  MATH  Google Scholar 

  24. Singh R, Kasana HS (2004) Computational aspects of effective thermal conductivity of highly porous metal foams. Appl Therm Eng 24:1841–1849

    Article  Google Scholar 

  25. Leach AG (1993) The thermal conductivity of foams. I: models for heat conduction. J Phys D Appl Phys 26:733–739

    Article  Google Scholar 

  26. Hashin Z, Shtrikman S (1962) A variational approach to the theory of the effective magnetic permeability of multiphase materials. J Appl Phys 33:3125–3131

    Article  MATH  Google Scholar 

  27. Landauer R (1952) The electrical resistance of binary metallic mixtures. J Appl Phys 23(7):779–784

    Article  Google Scholar 

  28. Keller JB (1962) A theorem on the conductivity of a composite medium. J Math Phys 5:548–549

    Article  MathSciNet  MATH  Google Scholar 

  29. Pieper M, Klein P (2012) Application of simple, periodic homogenization techniques to non-linear heat conduction problems in non-periodic, porous media. Heat Mass Transf 48:291–300

    Article  Google Scholar 

  30. Qu ZG, Wang TS, Tao WQ, Lu TJ (2012) A theoretical octet-truss lattice unit cell model for effective thermal conductivity of consolidated porous materials saturated with fluid. Heat Mass Transf 48:1385–1395

    Article  Google Scholar 

  31. Dai Z, Nawaz K, Park Y, Bock J, Jacobi A (2010) Correcting and extending the Boomsma–Poulikakos effective thermal conductivity model for three-dimensional, fluid-saturated metal foams. Int Commun Heat Mass Transf 37(6):575–580

    Article  Google Scholar 

  32. del Rio JA, Zimmerman RW, Dawe RA (1998) Formula for the conductivity of a two-component material based on the reciprocity theorem. Solid State Commun 106:183–186

    Article  Google Scholar 

  33. Takegoshi E, Hirasawa Y, Matsuo J, Okui K (1992) A study on effective thermal conductivity of porous metals. Trans Jpn Soc Mech Eng B 58:879–884

    Article  Google Scholar 

  34. Paek JW, Kang BH, Kim SY, Hyun JM (2000) Effective thermal conductivity and permeability of aluminium foam materials. Int J Thermophys 21(2):453–464

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the ANR (Agence Nationale de la Recherche) for financial support in the framework of FOAM project and all project partners for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Topin, F. Different arrangements of simplified models to predict effective thermal conductivity of open-cell foams. Heat Mass Transfer 53, 2473–2486 (2017). https://doi.org/10.1007/s00231-017-1993-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-017-1993-8

Keywords

Navigation