Skip to main content
Log in

Hydrodynamics and mass transfer coefficients for a modified Raschig ring packed column

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The pressure drop, the liquid holdup, as well as the liquid film mass transfer coefficients (kL) for a modified Raschig packing, with turbulence promoters, used in absorption columns, were determined experimentally. The aim of this work is to verify the improved mass transfer properties of this new packing for the randomly and, particularly, for the arranged packed columns. The experiments were performed at gas velocities ranging from 800 to 2,000 m h−1 and liquid velocities scaling between 2.5 and 8.11 m h−1, ranges that cover most of the absorption column operation conditions. Experimental data and correlations for the pressure drop, the liquid holdup and the gas–liquid mass transfer coefficients (kL) for modified Raschig ring packed columns are presented. The influence of the gas and the liquid velocities on the column hydrodynamics and the mass transfer coefficients have been obtained experimentally and also, have been compared with literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

at :

Total specific surface area (m2 m−3)

A:

Area (m2)

C:

Constant

d:

Diameter (m)

D:

Diffusion coefficient (ms−1)

F:

Gas load factor (Pa0.5)

Fr:

Froude number (dimensionless)

g:

Gravitational acceleration (m s−2)

hL :

Liquid holdup (mm−3 packing)

kH :

Henry’s constant (N m−2)

k:

Mass transfer coefficient (mm−2 h−1)

K:

Total mass transfer coefficient (m h−1)

KW :

Wall factor

L:

Liquid flowrate (mh−1)

N:

Solute volumic flowrate (mh−1)

n:

Exponent

p:

Partial pressure (N m−2)

Δp:

Pressure drop (N m−2)

Re:

Reynolds number (dimensionless)

u:

Velocity with reference to the free column cross-section (mm−2 s−1)

ū:

Mean effective velocity (m s−1)

T:

Temperature (K)

V:

Bed volume (m3)

X:

CO2 liquid concentration (mol CO2 mol water−1)

We:

The Weber number (dimensionless)

Z:

Packing height (m)

η:

Dynamic viscosity (Pa s)

σ:

Surface tension (N m−1)

ρ:

Density (kg m−3)

ε:

Void fraction (mm−3)

ν:

Kinematic viscosity (ms−1)

Ψ:

Resistance coefficient

b:

Bed

h:

Hydraulic

in:

At the column inlet

L:

Liquid phase

out:

At the column outlet

p:

Particle

V:

Gas or vapor

w:

Wetted

*:

At equilibrium

0:

Untrickled packing

References

  1. Billet R, Schultes M (1999) Prediction of mass transfer columns with dumped, arranged packings. Trans Inst Chem Eng 77:498–504

    Article  Google Scholar 

  2. Billet R, Schultes M (1991) Modeling of pressure drop in packed columns. Chem Eng Technol 14:89–95

    Article  Google Scholar 

  3. Mackowiak J (1990) Determination of flooding gas velocity, liquid hold-up at flooding in packed columns for gas/liquid systems. Chem Eng Technol 13:184–196

    Article  Google Scholar 

  4. Mackowiak J (1991) Pressure drop in irrigated packed columns. Chem Eng Process 29:93–105

    Article  Google Scholar 

  5. Leva M (1992) Reconsider packed-tower pressure-drop correlations. Chem Eng Progr 88:65–72

    Google Scholar 

  6. Stichlmair J, Bravo JL, Fair JR (1989) General model for prediction of pressure drop an capacity of countercurrent gas/liquid packed columns. Gas Sep Purif 3(3):19–28

    Article  Google Scholar 

  7. Tallmadge JA (1970) Packed bed pressure drop-an extension to higher Reynolds numbers. AIChE J 16(6):1092–1093

    Article  Google Scholar 

  8. Iliuta I, Grandjean BPA, Piché S, Larachi F (2003) Two fluid model for counter-current dumped packing-containing columns. Chem Eng Sci 58:1373–1380

    Article  Google Scholar 

  9. Carroll JJ, Slupsky JD, Mather AE (1991) The solubility of Carbon Dioxide in Water at Low Pressure. J Phys Chem Ref Data 20:1201–1209

    Article  Google Scholar 

  10. Piche S, Grandjean BP, Iliuta I, Larachi F (2001) Interfacial mass transfer in randomly packed towers: a confident correlation for environmental applications. Environ Sci Technol 35:4817–4822

    Article  Google Scholar 

  11. Onda U, Takeuchi H, Okumoto Y (1968) Mass transfer coefficients between gas, liquid phases in packed columns. J Chem Eng Jpn 1:56–62

    Article  Google Scholar 

  12. Wagner I, Stichlmair J, Fair JR (1997) Mass transfer in beds of modern, high-efficiency random packings. Ind Eng Chem Res 36:227–237

    Article  Google Scholar 

  13. Hoffmann A, Mackowiak JF, Gorak A, Haas M, Loning J-M, Runowski T, Hallenberger K (2007) Standardization of mass transfer measurements. A basis for the description of absorption processes. Chem Eng Res Des 85(1):40–49

    Article  Google Scholar 

  14. S. Petrescu, I. Mamaliga, D. Sidor (2011) Patent, Ro 123171

  15. VDI-Waermeatlas (1997) 8th edn. Springer, New York

  16. Sidor D, Mamaliga I, Petrescu S (2008) Petrescu, Caracteristici hidrodinamice ale unui tip de umplutura pentru coloane de absorbtie. I. Caderea de presiune. Rev Chim (Bucuresti) 59:911–914

    Google Scholar 

  17. Ergun S (1952) Fluid flow through packed columns. Chem Eng Progr 48:89–94

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. T. Iacob Tudose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mamaliga, I., Sidor, D., Condurat, C. et al. Hydrodynamics and mass transfer coefficients for a modified Raschig ring packed column. Heat Mass Transfer 50, 1385–1392 (2014). https://doi.org/10.1007/s00231-014-1324-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-014-1324-2

Keywords

Navigation