Skip to main content
Log in

Effect of the conical-shape on the performance of vortex tube

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The present study focuses on the effect of conical shape in the cold side of the Ranque-Hilsch vortex tube which is shown to have a considerable influence on the system performance. A vortex tube is a simple circular tube with no moving parts which is capable to divide a high pressure flow into two relatively lower pressure flows with temperatures higher and lower than the incoming flow. A three-dimensional computational fluid dynamic model is used to analyse the mechanisms of flow inside a vortex tube. The SST turbulence model is used to predict the turbulent flow behaviour inside the vortex tube. The geometry of a vortex tube with circumferential inlet slots as well as axial cold and hot outlet is considered. Performance curves temperature separation versus cold outlet mass fraction are calculated for a given inlet mass flow rate and varying outlet mass flow rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

H:

Total enthalpy, J/Kg

F1 :

First SST blending function

F2 :

Second SST blending function

K:

Turbulence kinetic energy

Pk :

Shear production of turbulence

P:

Pressure, Pa

R:

Universal gas constant, J/mol K

T:

Time, s

T:

Temperature, K

ΔTc :

Temperature difference between the inlet and the cold outlet ΔTc = Tin − Tc

ΔTh :

Temperature difference between the inlet and the hot outlet ΔTh = Th − Tin

U:

Velocity vector, m/s

Vn :

Total velocity vector, m/s

ρ :

Density, Kg/m3

τ:

Shear stress, N/m2

μ :

Dynamic viscosity

μ t :

Turbulent viscosity

v t :

Kinematic turbulent viscosity

ω :

Turbulent frequency

References

  1. Amitani T, Adachi T, Kato T (1983) A study on temperature separation in a large vortex tube. Trans ASME 49:877–884

    Google Scholar 

  2. Eiamsa-ard S, Pongjet P (2007) Numerical investigation of the thermal separation in a Ranque-Hilsch vortex tube. Int J Heat Mass Transf 50:821–832

    Article  MATH  Google Scholar 

  3. Saidi MH, Valipour MS (2003) Experimental modeling of vortex tube refrigerator. Appl Thermal Eng 23:1971–1980

    Article  Google Scholar 

  4. Eiamsa-ard S, Promvonge P (2008) Review of Ranque–Hilsch effects in vortex tubes. Renew Sustain Energy Rev 12:1822–1842

    Article  Google Scholar 

  5. Aydın O, Baki M (2006) An experimental study on the design parameters of a counterflow vortex tube. Energy 31:2763–2772

    Article  Google Scholar 

  6. Ranque GJ (1933) Experiments bon expansion in a vortex with simultaneous exhaust of hot and cold air. Le Journal de Physique, et le Radium (Paris) 4:1125–1130

    Google Scholar 

  7. Hilsch R (1947) The use of the expansion of gases in a centrifugal field as cooling process. Rev Sci Instrum 18:108–113

    Article  Google Scholar 

  8. Kurosaka M (1982) Acoustic streaming in swirl flow and the Ranque-Hilsch effect. J Fluid Mech 124:139–172

    Article  Google Scholar 

  9. Gustol AF (1997) The Ranque effect. Phys-Uspekhi 40:639–658

    Article  Google Scholar 

  10. Ahlborn B, Gordon JM (2000) The vortex tube as classic thermodynamic refrigeration cycle. J Appl Phys 88:3645–3653

    Article  Google Scholar 

  11. Arbuzov VA, Dubnizhchev YN, Lebedev AV, Pravdina MK, Yavorskii NI (1997) Observation of large scale hydrodynamic structures in vortex tube and the Ranque effect. Tech Phys Lett 23:938–940

    Article  Google Scholar 

  12. Lewins J, Benjan A (1999) Vortex optimization theory. Energy J 24:931–943

    Article  Google Scholar 

  13. Gao CM, Bosschaart KJ, Zeegers JCH, de Waele ATAM (2005) Experimental study on a simple Ranque-Hilsch vortex tube. Cryogenics 45:173–183

    Article  Google Scholar 

  14. Trofimov VM (2000) Physical Effect in Ranque-Hilsch Vortex Tube. J Exp Theor Phys 72:249–252

    Article  Google Scholar 

  15. Reynolds AJ (1961) Energy flows in a vortex tube. Cambr G. B XII:343–357

    Google Scholar 

  16. Linderstrom-Lang C (1964) Gas separation in the Ranque-Hilsch vortex tube. Int J Heat Mass Transf 7:1195–1206

    Article  Google Scholar 

  17. Bruun HH (1969) Experimental investigation of the energy separation in vortex tuves. J Mech Eng Sci 11:567–582

    Article  Google Scholar 

  18. Richard BK (1971) Gas vapour separation in a Ranque-Hilsch vortex tube. Am Ind Hyg Assoc J 32:820–825

    Article  Google Scholar 

  19. Choi BC, Riu KJ (1996) An experimental study for cold end orifice of vortex tube. Trans KSMEB Korea 20:1061–1073

    Google Scholar 

  20. Ahlborn B, Groves S (1997) Secondary flow in a vortex tube. Fluid Dyn Res 21:73–86

    Article  Google Scholar 

  21. Dincer K, Baskaya S, Uysal BZ, Ucgul I (2009) Experimental investigation of the performance of a Ranque-Hilsch vortex tube with regard to a plug located at the hot outlet. Int J Refrig 32:87–94

    Article  Google Scholar 

  22. Yilmaz M, Kaya M, Karagoz S, Erdogan S (2009) A review on design criteria for vortex tubes. Heat Mass Transf 45:613–632

    Article  Google Scholar 

  23. Dincer K, Tasdemir S, Baskaya S, Ucgul I, Uysal BZ (2008) Fuzzy modelling of performance of Conterflow Ranque-Hilsch vortex Tubes with different geometric constructions. Numer Heat Transf Part B Fundam Int J Comput Method 54:499–517

    Article  Google Scholar 

  24. Mischner J, Bespalov VI (2002) Zur Entropieproduktion im Ranque-Hilsch-Rohr. Forsch Ingenieurwes 67:1–10

    Article  Google Scholar 

  25. Dincer K, Tasdemir S, Baskaya S, Uysal BZ (2008) Modeling of the effect of length to diameter ratio and nozzle number on the performance of counterflow Ranque-Hilsch vortex tube using artificial neutral networks. Appl Therm Eng 28:2380–2390

    Article  Google Scholar 

  26. Cockerill T (1995) Thermodynamics and fluid mechanics of Ranque-Hilsch vortex tube. University of Cambridge, Cambridge

    Google Scholar 

  27. Promvonge P (1997) A numerical study of vortex tubes with an algebric Reynolds Stress model. University of London, England

    Google Scholar 

  28. Bahera U, Paul PJ, Kasthrirengen S, Karunanithi R, Ram SN, Danesh K, Jacob S (2005) CFD analysis and experimental investigations towards optimizing the parameters of Ranque-Hilsch vortex tube. Int J Heat Mass Transf 48:1961–1973

    Article  Google Scholar 

  29. Aljuwayhel NF, Nellis GF, Klein SA (2005) Parametric and internal study of vortex tube using a CFD model. Int J Refrig 28:442–450

    Article  Google Scholar 

  30. Skye HM, Nellis GF, Klein SA (2006) Comparison of CFD analysis to empirical data in a commercial vortex tube. Int J Refrig 29:71–80

    Article  Google Scholar 

  31. Tanvir F, Bakhtier F (2007) Large eddy simulation of the flow field and temperature separation in the Ranque-Hilsch vortex tube. Int J Heat Mass Transf 50:4725–4735

    Google Scholar 

  32. Pinar A, Uluer O, Kirmaci V (2009) Statistical assessment of counter flow vortex tube performance for different nozzle numbers, cold mass fraction and inlet pressures via Taguchi method. Exp Heat Mass Transf 22:271–282

    Article  Google Scholar 

  33. Saeid A, Nader P, Hasan S (2008) Numerical study of the temperature separation in Ranque-Hilsch vortex tube. Am J Eng Appl Sci ISSN 1941–7020:181–187

    Google Scholar 

Download references

Acknowledgments

The first author expresses his thanks and his gratitude to all the staff of the Institute of Turbomachinery and Fluid Dynamics Institute Hannover in Germany for providing the necessary facilities during his stay at the institute. Also he expresses his sincere thanks to the turbocharger group at TFD for their assistance and their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Guen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guen, M., Natkaniec, C., Kammeyer, J. et al. Effect of the conical-shape on the performance of vortex tube. Heat Mass Transfer 49, 521–531 (2013). https://doi.org/10.1007/s00231-012-1098-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-012-1098-3

Keywords

Navigation