Skip to main content

Advertisement

Log in

An acenocoumarol dosing algorithm exploiting clinical and genetic factors in South Indian (Dravidian) population

  • Pharmacogenetics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

The objective of this study was to determine the influence of CYP2C9, VKORC1, CYP4F2, and GGCX genetic polymorphisms on mean daily dose of acenocoumarol in South Indian patients and to develop a new pharmacogenetic algorithm based on clinical and genetic factors.

Methods

Patients receiving acenocoumarol maintenance therapy (n = 230) were included in the study. Single nucleotide polymorphisms (SNP) of CYP2C9, VKORC1, CYP4F2, and GGCX were genotyped by real-time polymerase chain reaction (RT-PCR) method.

Results

The mean daily acenocoumarol maintenance dose was found to be 3.7 ± 2.3 (SD) mg/day. The CYP2C9 *1*2, CYP2C9 *1*3, and CYP2C9 *2*3 variant genotypes significantly reduced the dose by 56.7 % (2.0 mg), 67.6 % (1.6 mg), and 70.3 % (1.5 mg) than wild-type carriers 4.1 mg, p < 0.0001. The genetic variants of CYP2C9 and GGCX (rs11676382) were found to be associated with lower acenocoumarol dose, whereas CYP4F2 (rs2108622) was associated with higher doses. Age, body mass index (BMI), variation of CYP2C9, VKORC1, CYP4F2, and GGCX were the major determinants of acenocoumarol maintenance dose, accounting for 61.8 % of its variability (adjusted r 2 = 0.615, p < 0.0001). Among the VKORC1 variants, rs9923231 alone contributed up to 28.6 % of the acenocoumarol dose variation.

Conclusion

VKORC1 rs9923231 polymorphism had the highest impact on acenocoumarol daily dose. A new pharmacogenetic algorithm was established to determine the acenocoumarol dose in South Indian population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Buller HR, Agnelli G, Hull RD, Hyers TM, Prins MH, Raskob GE (2004) Antithrombotic therapy for venous thromboembolic disease: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest 126:401S–428S

    Article  CAS  PubMed  Google Scholar 

  2. Salem DN, Stein PD, Al-Ahmad A, Bussey HI, Horstkotte D, Miller N et al (2004) Antithrombotic therapy in valvular heart disease–native and prosthetic: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest 126:457S–482S

    Article  CAS  PubMed  Google Scholar 

  3. Singer DE, Albers GW, Dalen JE, Go AS, Halperin JL, Manning WJ (2004) Antithrombotic therapy in atrial fibrillation: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest 126:429S–456S

    Article  CAS  PubMed  Google Scholar 

  4. Horowitz B, Minor P, Morgenthaler JJ, Burnouf T, McIntosh R, Padilla A et al (2004) WHO Expert Committee on Biological Standardization. World Health Organ Tech Rep 924:1–232, backcover

    CAS  Google Scholar 

  5. James AH, Britt RP, Raskino CL, Thompson SG (1992) Factors affecting the maintenance dose of warfarin. J Clin Pathol 45:704–706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Verde Z, Santiago C, Valle B, Fernandez-Santander A, Bandres F, Calvo E et al (2009) Pharmacogenetics of acenocoumarol: CYP2C9 *2 and VKORC1 c.-1639G > A, 497C > G, 1173C > T, and 3730G > A variants influence drug dose in anticoagulated patients. Thromb Haemost 101:591–593

    CAS  PubMed  Google Scholar 

  7. Carcas AJ, Borobia AM, Velasco M, Bad-Santos F, Diaz MQ, Fernandez-Capitan C et al (2012) Efficiency and effectiveness of the use of an acenocoumarol pharmacogenetic dosing algorithm versus usual care in patients with venous thromboembolic disease initiating oral anticoagulation: study protocol for a randomized controlled trial. Trials 13:239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Verhoef TI, Redekop WK, Buikema MM, Schalekamp T, van der Meer FJ, le CS et al (2012) Long-term anticoagulant effects of the CYP2C9 and VKORC1 genotypes in acenocoumarol users. J Thromb Haemost 10:606–614

    Article  CAS  PubMed  Google Scholar 

  9. Li T, Chang CY, Jin DY, Lin PJ, Khvorova A, Stafford DW (2004) Identification of the gene for vitamin K epoxide reductase. Nature 427:541–544

    Article  CAS  PubMed  Google Scholar 

  10. Liu Y, Zhong SL, Tan HH, Yang M, Fei HW, Yu XY et al (2011) Impact of CYP2C9 and VKORC1 polymorphism on warfarin response during initiation of therapy. Zhonghua Xin Xue Guan Bing Za Zhi 39:929–935

    PubMed  Google Scholar 

  11. Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod HL et al (2005) Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 352:2285–2293

    Article  CAS  PubMed  Google Scholar 

  12. Perez-Andreu V, Roldan V, Anton AI, Garcia-Barbera N, Corral J, Vicente V et al (2009) Pharmacogenetic relevance of CYP4F2 V433M polymorphism on acenocoumarol therapy. Blood 113:4977–4979

    Article  CAS  PubMed  Google Scholar 

  13. King CR, Deych E, Milligan P, Eby C, Lenzini P, Grice G et al (2010) Gamma-glutamyl carboxylase and its influence on warfarin dose. Thromb Haemost 104:750–754

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Gage BF, Eby C, Milligan PE, Banet GA, Duncan JR, McLeod HL (2004) Use of pharmacogenetics and clinical factors to predict the maintenance dose of warfarin. Thromb Haemost 91:87–94

    CAS  PubMed  Google Scholar 

  15. Rathore SS, Agarwal SK, Pande S, Singh SK, Mittal T, Mittal B (2012) Therapeutic dosing of acenocoumarol: proposal of a population specific pharmacogenetic dosing algorithm and its validation in north Indians. PLoS One 7:e37844

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Tham LS, Goh BC, Nafziger A, Guo JY, Wang LZ, Soong R et al (2006) A warfarin-dosing model in Asians that uses single-nucleotide polymorphisms in vitamin K epoxide reductase complex and cytochrome P450 2C9. Clin Pharmacol Ther 80:346–355

    Article  CAS  PubMed  Google Scholar 

  17. Verde Z, Ruiz JR, Santiago C, Valle B, Bandres F, Calvo E et al (2010) A novel, single algorithm approach to predict acenocoumarol dose based on CYP2C9 and VKORC1 allele variants. PLoS One 5:e11210

    Article  PubMed Central  PubMed  Google Scholar 

  18. Takahashi H, Wilkinson GR, Nutescu EA, Morita T, Ritchie MD, Scordo MG et al (2006) Different contributions of polymorphisms in VKORC1 and CYP2C9 to intra- and inter-population differences in maintenance dose of warfarin in Japanese, Caucasians and African-Americans. Pharmacogenet Genomics 16:101–110

    Article  CAS  PubMed  Google Scholar 

  19. Dang MT, Hambleton J, Kayser SR (2005) The influence of ethnicity on warfarin dosage requirement. Ann Pharmacother 39:1008–1012

    Article  CAS  PubMed  Google Scholar 

  20. Jose R, Chandrasekaran A, Sam SS, Gerard N, Chanolean S, Abraham BK et al (2005) CYP2C9 and CYP2C19 genetic polymorphisms: frequencies in the south Indian population. Fundam Clin Pharmacol 19:101–105

    Article  CAS  PubMed  Google Scholar 

  21. Xie HG, Prasad HC, Kim RB, Stein CM (2002) CYP2C9 allelic variants: ethnic distribution and functional significance. Adv Drug Deliv Rev 54:1257–1270

    Article  CAS  PubMed  Google Scholar 

  22. Scibona P, Redal MA, Garfi LG, Arbelbide J, Argibay PF, Belloso WH (2012) Prevalence of CYP2C9 and VKORC1 alleles in the Argentine population and implications for prescribing dosages of anticoagulants. Genet Mol Res 11:70–76

    Article  CAS  PubMed  Google Scholar 

  23. Reich D, Thangaraj K, Patterson N, Price AL, Singh L (2009) Reconstructing Indian population history. Nature 461:489–494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Krishnakumar D, Gurusamy U, Dhandapani K, Surendiran A, Baghel R, Kukreti R et al (2012) Genetic polymorphisms of drug-metabolizing phase I enzymes CYP2E1, CYP2A6 and CYP3A5 in South Indian population. Fundam Clin Pharmacol 26:295–306

    Article  CAS  PubMed  Google Scholar 

  25. Naveen AT, Adithan C, Soya SS, Gerard N, Krishnamoorthy R (2006) CYP2D6 genetic polymorphism in South Indian populations. Biol Pharm Bull 29:1655–1658

    Article  PubMed  Google Scholar 

  26. Kumar DK, Shewade DG, Surendiran A, Adithan C (2013) Genetic variation and haplotype structure of the gene Vitamin K epoxide reductase complex, subunit 1 in the Tamilian population. J Pharmacol Pharmacother 4:53–58

    Article  PubMed Central  PubMed  Google Scholar 

  27. Barrett JC (2009) Haploview: Visualization and analysis of SNP genotype data. Cold Spring Harb Protoc 2009: db

  28. Gurwitz JH, Avorn J, Ross-Degnan D, Choodnovskiy I, Ansell J (1992) Aging and the anticoagulant response to warfarin therapy. Ann Intern Med 116:901–904

    Article  CAS  PubMed  Google Scholar 

  29. Yoshizawa M, Hayashi H, Tashiro Y, Sakawa S, Moriwaki H, Akimoto T et al (2009) Effect of VKORC1(rs9923231) polymorphism, body weight, age, and serum albumin alterations on warfarin response in Japanese patients. Thromb Res 124:161–166

    Article  CAS  PubMed  Google Scholar 

  30. Gan GG, Teh A, Goh KY, Chong HT, Pang KW (2003) Racial background is a determinant factor in the maintenance dosage of warfarin. Int J Hematol 78:84–86

    Article  CAS  PubMed  Google Scholar 

  31. Yuan HY, Chen JJ, Lee MT, Wung JC, Chen YF, Charng MJ et al (2005) A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum Mol Genet 14:1745–1751

    Article  CAS  PubMed  Google Scholar 

  32. Bodin L, Verstuyft C, Tregouet DA, Robert A, Dubert L, Funck-Brentano C et al (2005) Cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase (VKORC1) genotypes as determinants of acenocoumarol sensitivity. Blood 106:135–140

    Article  CAS  PubMed  Google Scholar 

  33. Cini M, Legnani C, Cosmi B, Guazzaloca G, Valdre L, Frascaro M et al (2012) A new warfarin dosing algorithm including VKORC1 3730 G > A polymorphism: comparison with results obtained by other published algorithms. Eur J Clin Pharmacol 68:1167–1174

    Article  CAS  PubMed  Google Scholar 

  34. Anderson JL, Horne BD, Stevens SM, Grove AS, Barton S, Nicholas ZP et al (2007) Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation 116:2563–2570

    Article  CAS  PubMed  Google Scholar 

  35. Cavallari LH, Momary KM, Patel SR, Shapiro NL, Nutescu E, Viana MA (2011) Pharmacogenomics of warfarin dose requirements in Hispanics. Blood Cells Mol Dis 46:147–150

    Article  CAS  PubMed  Google Scholar 

  36. Gan GG, Phipps ME, Lee MM, Lu LS, Subramaniam RY, Bee PC et al (2011) Contribution of VKORC1 and CYP2C9 polymorphisms in the interethnic variability of warfarin dose in Malaysian populations. Ann Hematol 90:635–641

    Article  CAS  PubMed  Google Scholar 

  37. Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, Lee MT et al (2009) Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med 360:753–764

    Article  CAS  PubMed  Google Scholar 

  38. Ohno M, Yamamoto A, Ono A, Miura G, Funamoto M, Takemoto Y et al (2009) Influence of clinical and genetic factors on warfarin dose requirements among Japanese patients. Eur J Clin Pharmacol 65:1097–1103

    Article  CAS  PubMed  Google Scholar 

  39. Pavani A, Naushad SM, Mishra RC, Malempati AR, Pinjala R, Kumar TR et al (2012) Retrospective evidence for clinical validity of expanded genetic model in warfarin dose optimization in a South Indian population. Pharmacogenomics 13:869–878

    Article  CAS  PubMed  Google Scholar 

  40. Shahin MH, Khalifa SI, Gong Y, Hammad LN, Sallam MT, El SM et al (2011) Genetic and nongenetic factors associated with warfarin dose requirements in Egyptian patients. Pharmacogenet Genomics 21:130–135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Shrif NE, Won HH, Lee ST, Park JH, Kim KK, Kim MJ et al (2011) Evaluation of the effects of VKORC1 polymorphisms and haplotypes, CYP2C9 genotypes, and clinical factors on warfarin response in Sudanese patients. Eur J Clin Pharmacol 67:1119–1130

    Article  CAS  PubMed  Google Scholar 

  42. Kumar DK, Shewade DG, Loriot MA, Beaune P, Balachander J, Sai Chandran BV et al (2014) Effect of CYP2C9, VKORC1, CYP4F2 and GGCX genetic variants on warfarin maintenance dose and explicating a new pharmacogenetic algorithm in South Indian population. Eur J Clin Pharmacol 70:47–56

    Article  Google Scholar 

  43. Cerezo-Manchado JJ, Rosafalco M, Anton AI, Perez-Andreu V, Garcia-Barbera N, Martinez AB et al (2013) Creating a genotype-based dosing algorithm for acenocoumarol steady dose. Thromb Haemost 109:146–153

    Article  CAS  PubMed  Google Scholar 

  44. van Schie RM, Babajeff AM, Schalekamp T, Wessels JA, Le CS, De BA et al (2012) An evaluation of gene-gene interaction between the CYP2C9 and VKORC1 genotypes affecting the anticoagulant effect of phenprocoumon and acenocoumarol. J Thromb Haemost 10:767–772

    Article  PubMed  Google Scholar 

  45. Verhoef TI, Ragia G, de Boer A, Barallon R, Kolovou G, Kolovou V et al (2013) A randomized trial of genotype- guided dosing of acenocoumarol and phenprocoumon. N Engl J Med 369:2304–2312

    Article  CAS  PubMed  Google Scholar 

  46. Pirmohamed M, Burnside G, Eriksson N, Jorgensen AL, Toh CH, Nicholson T et al (2013) A randomized trial of genotype- guided dosing of warfarin. N Engl J Med 369:2294–2303

    Article  CAS  PubMed  Google Scholar 

  47. Saraeva RB, Paskaleva ID, Doncheva E, Eap CB, Ganev VS (2007) Pharmacogenetics of acenocoumarol: CYP2C9, CYP2C19, CYP1A2, CYP3A4, CYP3A5 and ABCB1 gene polymorphisms and dose requirements. J Clin Pharm Ther 32:641–649

    Article  CAS  PubMed  Google Scholar 

  48. Teichert M, Eijgelsheim M, Rivadeneira F, Uitterlinden AG, van Schaik RH, Hofman A et al (2009) A genome-wide association study of acenocoumarol maintenance dosage. Hum Mol Genet 18:3758–3768

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was a collaborative project between INSERM UMR775–Bases Moléculaires de la réponse aux xénobiotiques located in the Université Paris-Descartes, Paris, France and Indian council of Medical Research, New Delhi, India. It was supported by a research grant (ICMR Ref. No. 50/6/2010/BMS, dated 03/11/2010) from the ICMR, New Delhi. The technical staffs of departments of pharmacology, cardiology and CTVS are gratefully acknowledged.

Conflict of interest

All the authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhakchinamoorthi Krishna Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

LD pattern of the haplotypes tagSNPs. The single nucleotide polymorphisms in chromosome 16 were positioned according to the order and orientation. Each of the variant is given with their specific chromosomal position and the rsID. LD pattern of the rs9923231, rs7196161, rs2884737, rs1770847, rs9934438, rs8050894, rs2359612 and rs7294 in the study population. Red and pink colors represent a very strong LD pattern (D’> 0.8) and white color represents moderate to low LD (D’<0.8 to >0.5). The D’ prime values given inside the color boxes respect to the LD between the SNPs. (DOCX 13 kb)

ESM 2

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishna Kumar, D., Shewade, D.G., Loriot, MA. et al. An acenocoumarol dosing algorithm exploiting clinical and genetic factors in South Indian (Dravidian) population. Eur J Clin Pharmacol 71, 173–181 (2015). https://doi.org/10.1007/s00228-014-1791-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-014-1791-x

Keywords

Navigation