Skip to main content

Advertisement

Log in

Evaluation of the effects of VKORC1 polymorphisms and haplotypes, CYP2C9 genotypes, and clinical factors on warfarin response in Sudanese patients

  • Pharmacogenetics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

African populations, including the Sudanese, are underrepresented in warfarin pharmacogenetic studies. We designed a study to determine the associations between the polymorphisms and haplotype structures of CYP2C9 and VKORC1 and warfarin dose response in Sudanese patients, one of the most genetically diverse populations in Africa.

Material and methods

The effect of the CYP2C9 polymorphisms (*2, *3, *5, *6, *8, *9, and *11), 20 VKORC1 tag SNPs and haplotypes, and clinical covariates were comprehensively assessed in 203 Sudanese warfarin-treated patients.

Results

Patients with the CYP2C9*2,*5,*6, or *11 variant required a daily warfarin dose that was 21% lower than those with CYP2C9*1/*1 (4.7 vs 5.8 mg/day, P < 0.001). SNPs around the VKORC1 and POL3S genes were divided into two haplotype blocks in Sudanese populations. According to multiple linear regression results, rs8050984, rs7294, and rs7199949 in the VKORC1 and POL3S genes (P <0.001, <0.001, <0.001, respectively), CYP2C9 genotype (*2, *5, *6, *11; P < 0.001), body weight (P = 0.04), target INR (P = 0.007), and concurrent medications (P = 0.029) could explain about 36.7% of the total warfarin dose variation.

Conclusion

Our data revealed that VKORC1 and CYP2C9 polymorphisms are important factors that influence warfarin dose response in Sudanese patients. Our data suggest that combinations of the SNPs may improve predictions of warfarin dose requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hirsh J, Dalen J, Anderson DR, Poller L, Bussey H, Ansell J, Deykin D (2001) Oral anticoagulants: mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest 119(1 Suppl):8S–21S

    Article  PubMed  CAS  Google Scholar 

  2. Limdi NA, Wadelius M, Cavallari L, Eriksson N, Crawford DC, Lee MT, Chen CH, Motsinger-Reif A, Sagreiya H, Liu N, Wu AH, Gage BF, Jorgensen A, Pirmohamed M, Shin JG, Suarez-Kurtz G, Kimmel SE, Johnson JA, Klein TE, Wagner MJ (2010) Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups. Blood 115(18):3827–3834. doi:10.1182/blood-2009-12-255992

    Google Scholar 

  3. Moyer TP, O'Kane DJ, Baudhuin LM, Wiley CL, Fortini A, Fisher PK, Dupras DM, Chaudhry R, Thapa P, Zinsmeister AR, Heit JA (2009) Warfarin sensitivity genotyping: a review of the literature and summary of patient experience. Mayo Clin Proc 84(12):1079–1094. doi:10.4065/mcp.2009.0278

    Article  PubMed  CAS  Google Scholar 

  4. Takahashi H, Echizen H (2001) Pharmacogenetics of warfarin elimination and its clinical implications. Clin Pharmacokinet 40(8):587–603

    Article  PubMed  CAS  Google Scholar 

  5. Hamberg AK, Dahl ML, Barban M, Scordo MG, Wadelius M, Pengo V, Padrini R, Jonsson EN (2007) A PK-PD model for predicting the impact of age, CYP2C9, and VKORC1 genotype on individualization of warfarin therapy. Clin Pharmacol Ther 81(4):529–538. doi:10.1038/sj.clpt.6100084

    Article  PubMed  CAS  Google Scholar 

  6. Kaminsky LS, Zhang Z-Y (1997) Human P450 metabolism of warfarin. Pharmacol Ther 73(1):67–74

    Article  PubMed  CAS  Google Scholar 

  7. Wadelius M, Pirmohamed M (2007) Pharmacogenetics of warfarin: current status and future challenges. Pharmacogenomics J 7(2):99–111. doi:10.1038/sj.tpj.6500417

    Article  PubMed  CAS  Google Scholar 

  8. Linder MW (2001) Genetic mechanisms for hypersensitivity and resistance to the anticoagulant warfarin. Clin Chim Acta 308(1–2):9–15

    Article  PubMed  CAS  Google Scholar 

  9. Lindh JD, Holm L, Andersson ML, Rane A (2009) Influence of CYP2C9 genotype on warfarin dose requirements—a systematic review and meta-analysis. Eur J Clin Pharmacol 65(4):365–375

    Article  PubMed  CAS  Google Scholar 

  10. Sanderson S, Emery J, Higgins J (2005) CYP2C9 gene variants, drug dose, and bleeding risk in warfarin-treated patients: a HuGEnet systematic review and meta-analysis. Genet Med 7(2):97–104

    Article  PubMed  CAS  Google Scholar 

  11. Sistonen J, Fuselli S, Palo JU, Chauhan N, Padh H, Sajantila A (2009) Pharmacogenetic variation at CYP2C9, CYP2C19, and CYP2D6 at global and microgeographic scales. Pharmacogenet Genomics 19(2):170–179. doi:10.1097/FPC.1090b1013e32831ebb32830

    Article  PubMed  CAS  Google Scholar 

  12. Scordo M, Aklillu E, Yasar U, Dahl M, Spina E, Ingelman-Sundberg M (2001) Genetic polymorphism of cytochrome P450 2C9 in a Caucasian and a black African population. Br J Clin Pharmacol 52(4):447–450

    Article  PubMed  CAS  Google Scholar 

  13. Allabi AC, Gala JL, Horsmans Y (2005) CYP2C9, CYP2C19, ABCB1 (MDR1) genetic polymorphisms and phenytoin metabolism in a Black Beninese population. Pharmacogenet Genomics 15(11):779–786

    Article  PubMed  CAS  Google Scholar 

  14. Blaisdell J, Jorge-Nebert LF, Coulter S, Ferguson SS, Lee SJ, Chanas B, Xi T, Mohrenweiser H, Ghanayem B, Goldstein JA (2004) Discovery of new potentially defective alleles of human CYP2C9. Pharmacogenetics 14(8):527–537

    Article  PubMed  CAS  Google Scholar 

  15. Dickmann LJ, Rettie AE, Kneller MB, Kim RB, Wood AJ, Stein CM, Wilkinson GR, Schwarz UI (2001) Identification and functional characterization of a new CYP2C9 variant (CYP2C9*5) expressed among African Americans. Mol Pharmacol 60(2):382–387

    PubMed  CAS  Google Scholar 

  16. Kidd RS, Curry TB, Gallagher S, Edeki T, Blaisdell J, Goldstein JA (2001) Identification of a null allele of CYP2C9 in an African-American exhibiting toxicity to phenytoin. Pharmacogenetics 11(9):803–808

    Article  PubMed  CAS  Google Scholar 

  17. Yang L, Ge W, Yu F, Zhu H (2010) Impact of VKORC1 gene polymorphism on interindividual and interethnic warfarin dosage requirement—a systematic review and meta analysis. Thromb Res 125(4): e159–e166. doi:10.1016/j.thromres.2009.10.017

  18. Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod HL, Blough DK, Thummel KE, Veenstra DL, Rettie AE (2005) Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 352(22):2285–2293. doi:10.1056/NEJMoa044503

    Article  PubMed  CAS  Google Scholar 

  19. Lee SC, Ng SS, Oldenburg J, Chong PY, Rost S, Guo JY, Yap HL, Rankin SC, Khor HB, Yeo TC, Ng KS, Soong R, Goh BC (2006) Interethnic variability of warfarin maintenance requirement is explained by VKORC1 genotype in an Asian population. Clin Pharmacol Ther 79(3):197–205. doi:10.1016/j.clpt.2005.11.006

    Article  PubMed  CAS  Google Scholar 

  20. Limdi NA, Beasley TM, Crowley MR, Goldstein JA, Rieder MJ, Flockhart DA, Arnett DK, Acton RT, Liu N (2008) VKORC1 polymorphisms, haplotypes and haplotype groups on warfarin dose among African-Americans and European-Americans. Pharmacogenomics 9(10):1445–1458. doi:10.2217/14622416.9.10.1445

    Article  PubMed  CAS  Google Scholar 

  21. Cavallari LH, Langaee TY, Momary KM, Shapiro NL, Nutescu EA, Coty WA, Viana MA, Patel SR, Johnson JA (2010) Genetic and clinical predictors of warfarin dose requirements in African Americans. Clin Pharmacol Ther 87(4):459–464. doi:10.1038/clpt.2009.223

    Google Scholar 

  22. Schelleman H, Chen Z, Kealey C, Whitehead AS, Christie J, Price M, Brensinger CM, Newcomb CW, Thorn CF, Samaha FF, Kimmel SE (2007) Warfarin response and vitamin K epoxide reductase complex 1 in African Americans and Caucasians. Clin Pharmacol Ther 81(5):742–747

    Article  PubMed  CAS  Google Scholar 

  23. Anderson JL, Horne BD, Stevens SM, Grove AS, Barton S, Nicholas ZP, Kahn SFS, May HT, Samuelson KM, Muhlestein JB, Carlquist JF, for the Couma-Gen Investigators (2007) Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation 116(22):2563–2570. doi:10.1161/circulationaha.107.737312

    Article  PubMed  CAS  Google Scholar 

  24. Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, Lee MT, Limdi NA, Page D, Roden DM, Wagner MJ, Caldwell MD, Johnson JA (2009) Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med 360(8):753–764

    Article  PubMed  Google Scholar 

  25. Millican EA, Lenzini PA, Milligan PE, Grosso L, Eby C, Deych E, Grice G, Clohisy JC, Barrack RL, Burnett RSJ, Voora D, Gatchel S, Tiemeier A, Gage BF (2007) Genetic-based dosing in orthopedic patients beginning warfarin therapy. Blood 110(5):1511–1515. doi:10.1182/blood-2007-01-069609

    Article  PubMed  CAS  Google Scholar 

  26. Obayashi K, Nakamura K, Kawana J, Ogata H, Hanada K, Kurabayashi M, Hasegawa A, Yamamoto K, Horiuchi R (2006) VKORC1 gene variations are the major contributors of variation in warfarin dose in Japanese patients. Clin Pharmacol Ther 80(2):169–178. doi:10.1016/j.clpt.2006.04.010

    Article  PubMed  CAS  Google Scholar 

  27. Schelleman H, Chen J, Chen Z, Christie J, Newcomb CW, Brensinger CM, Price M, Whitehead AS, Kealey C, Thorn CF, Samaha FF, Kimmel SE (2008) Dosing algorithms to predict warfarin maintenance dose in Caucasians and African Americans. Clin Pharmacol Ther 84(3):332–339

    Article  PubMed  CAS  Google Scholar 

  28. Tham LS, Goh BC, Nafziger A, Guo JY, Wang LZ, Soong R, Lee SC (2006) A warfarin-dosing model in Asians that uses single-nucleotide polymorphisms in vitamin K epoxide reductase complex and cytochrome P450 2C9. Clin Pharmacol Ther 80(4):346–355. doi:10.1016/j.clpt.2006.06.009

    Article  PubMed  CAS  Google Scholar 

  29. Yoshizawa M, Hayashi H, Tashiro Y, Sakawa S, Moriwaki H, Akimoto T, Doi O, Kimura M, Kawarasaki Y, Inoue K, Itoh K (2009) Effect of VKORC1-1639 G>A polymorphism, body weight, age, and serum albumin alterations on warfarin response in Japanese patients. Thromb Res 124(2):161–166. doi:10.1016/j.thromres.2008.11.011

    Article  PubMed  CAS  Google Scholar 

  30. Zhu Y, Shennan M, Reynolds KK, Johnson NA, Herrnberger MR, Valdes R Jr, Linder MW (2007) Estimation of warfarin maintenance dose based on VKORC1 (−1639 G>A) and CYP2C9 genotypes. Clin Chem 53(7):1199–1205. doi:10.1373/clinchem.2006.078139

    Article  PubMed  CAS  Google Scholar 

  31. Gage BF, Eby C, Johnson JA, Deych E, Rieder MJ, Ridker PM, Milligan PE, Grice G, Lenzini P, Rettie AE, Aquilante CL, Grosso L, Marsh S, Langaee T, Farnett LE, Voora D, Veenstra DL, Glynn RJ, Barrett A, McLeod HL (2008) Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther 84(3):326–331

    Article  PubMed  CAS  Google Scholar 

  32. Cavallari LH, Limdi NA (2009) Warfarin pharmacogenomics. Curr Opin Mol Ther 11(3):243–251

    PubMed  CAS  Google Scholar 

  33. Tishkoff SA, Reed FA, Friedlaender FR, Ehret C, Ranciaro A, Froment A, Hirbo JB, Awomoyi AA, Bodo JM, Doumbo O, Ibrahim M, Juma AT, Kotze MJ, Lema G, Moore JH, Mortensen H, Nyambo TB, Omar SA, Powell K, Pretorius GS, Smith MW, Thera MA, Wambebe C, Weber JL, Williams SM (2009) The genetic structure and history of Africans and African Americans. Science 324(5930):1035–1044

    Article  PubMed  CAS  Google Scholar 

  34. Tishkoff SA, Verrelli BC (2003) Patterns of human genetic diversity: implications for human evolutionary history and disease. Annu Rev Genomics Hum Genet 4:293–340

    Article  PubMed  CAS  Google Scholar 

  35. Schelleman H, Brensinger CM, Chen J, Finkelman BS, Rieder MJ, Kimmel SE (2010) New genetic variant that might improve warfarin dose prediction in African Americans. Br J Clin Pharmacol 70(3):393–399

    Google Scholar 

  36. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D (2002) The structure of haplotype blocks in the human genome. Science 296(5576):2225–2229. doi:10.1126/science.1069424

    Article  PubMed  CAS  Google Scholar 

  37. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B Methodol 57(1):289–300

    Google Scholar 

  38. Limdi N, Goldstein J, Blaisdell J, Beasley T, Rivers C, Acton R (2007) Influence of CYP2C9 genotype on warfarin dose among African American and European Americans. Per Med 4(2):157–169. doi:10.2217/17410541.4.2.157

    Article  PubMed  CAS  Google Scholar 

  39. Holbrook AM, Pereira JA, Labiris R, McDonald H, Douketis JD, Crowther M, Wells PS (2005) Systematic overview of warfarin and its drug and food interactions. Arch Intern Med 165(10):1095–1106

    Article  PubMed  CAS  Google Scholar 

  40. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    PubMed  CAS  Google Scholar 

  41. Goldstein JA, Blaisdell JA, Limdi NA (2009) A potentially deleterious new CYP2C9 polymorphism identified in an African American patient with major hemorrhage on warfarin therapy. Blood Cells Mol Dis 42(2):155–158. doi:10.1016/j.bcmd.2008.10.011

    Article  PubMed  CAS  Google Scholar 

  42. Allabi AC, Gala JL, Horsmans Y, Babaoglu MO, Bozkurt A, Heusterspreute M, Yasar U (2004) Functional impact of CYP2C95, CYP2C96, CYP2C98, and CYP2C911 in vivo among black Africans. Clin Pharmacol Ther 76(2):113–118. doi:10.1016/j.clpt.2004.04.001

    Article  PubMed  CAS  Google Scholar 

  43. Matimba A, Del-Favero J, Van Broeckhoven C, Masimirembwa C (2009) Novel variants of major drug-metabolising enzyme genes in diverse African populations and their predicted functional effects. Hum Genomics 3(2):169–190

    PubMed  CAS  Google Scholar 

  44. D'Andrea G, D'Ambrosio RL, Di Perna P, Chetta M, Santacroce R, Brancaccio V, Grandone E, Margaglione M (2005) A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood 105(2):645–649. doi:10.1182/blood-2004-06-2111

    Article  PubMed  Google Scholar 

  45. John JM, Herrington DM (2006) Maintenance warfarin dose varies according to two haplotypes of the vitamin K epoxide reductase gene. Future Cardiol 2(1):29–32. doi:10.2217/14796678.2.1.29

    Article  PubMed  CAS  Google Scholar 

  46. Al-Zahery N, Semino O, Benuzzi G, Magri C, Passarino G, Torroni A, Santachiara-Benerecetti AS (2003) Y-chromosome and mtDNA polymorphisms in Iraq, a crossroad of the early human dispersal and of post-Neolithic migrations. Mol Phylogenet Evol 28(3):458–472

    Article  PubMed  CAS  Google Scholar 

  47. Hassan HY, Underhill PA, Cavalli-Sforza LL, Ibrahim ME (2008) Y-chromosome variation among Sudanese: restricted gene flow, concordance with language, geography, and history. Am J Phys Anthropol 137(3):316–323

    Article  PubMed  Google Scholar 

  48. Cal S, Peinado JR, Llamazares M, Quesada V, Moncada-Pazos A, Garabaya C, Lopez-Otin C (2006) Identification and characterization of human polyserase-3, a novel protein with tandem serine-protease domains in the same polypeptide chain. BMC Biochem 7:9

    Article  PubMed  Google Scholar 

  49. Takeuchi F, McGinnis R, Bourgeois S, Barnes C, Eriksson N, Soranzo N, Whittaker P, Ranganath V, Kumanduri V, McLaren W, Holm L, Lindh J, Rane A, Wadelius M, Deloukas P (2009) A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet 5(3):e1000433. doi:10.1371/journal.pgen.1000433

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant of the Korea Health 21 R&D Project, Ministry of Health & Welfare, Republic of Korea (A030001). We are grateful to all doctors, nurses, and patients from Ahmed Gasim Hospital and Sudan Heart Centre who participated in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Won Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Supplementary Information (DOC 128 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shrif, N.E.M.A., Won, HH., Lee, ST. et al. Evaluation of the effects of VKORC1 polymorphisms and haplotypes, CYP2C9 genotypes, and clinical factors on warfarin response in Sudanese patients. Eur J Clin Pharmacol 67, 1119–1130 (2011). https://doi.org/10.1007/s00228-011-1060-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-011-1060-1

Keywords

Navigation