Skip to main content

Advertisement

Log in

Metabolic cold adaptation and aerobic performance of blue mussels (Mytilus edulis) along a temperature gradient into the High Arctic region

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The blue mussel (Mytilus edulis) has recently expanded its northern distribution in the Arctic and is therefore considered to be a sensitive indicator of climate changes in this region. In this study, we compared aerobic performance of blue mussels from High Arctic, Subarctic and temperate populations at different temperatures. Standard metabolic rates (SMR) and active metabolic rates (AMR) were measured for each population, and absolute (AMR − SMR) and factorial (\(\frac{AMR}{SMR}\)) scopes were calculated. Blue mussels from the temperate population had the lowest Q10 (= 1.8) and the largest thermal window (−1 to 25 °C), whereas Q10 values in the Arctic populations were 1.9 (Subarctic) and 2.3 (High Arctic), with a thermal window of −1 to 21 °C. Aerobic scope increased with rising temperatures, reaching a maximum at 14 °C (temperate) and 7 °C (Subarctic and High Arctic, respectively), after which a decrease was observed at temperatures exceeding 14 °C. At low temperatures (−1 °C), the average SMR of the High Arctic population was 93 % higher than that of the temperate population and 22 % higher than that of the Subarctic population. Combined, our results demonstrate physiological adaptation and plasticity of blue mussels across latitudes spanning from 56 to 77ºN. This indicates that low ocean temperature per se does not constrain metabolic activity of Mytilus in the Arctic; rather, we speculate that maturation of reproductive tissues, larval supply and annual energy budgets are the most relevant factors influencing Mytilus populations near their northern distributional edge in the Arctic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Addo-Bediako A, Chown SL, Gaston KJ (2002) Metabolic cold adaptation in insects: a large-scale perspective. Funct Ecol 16:332–338. doi:10.1046/j.1365-2435.2002.00634.x

    Article  Google Scholar 

  • Begum S, Basova L, Strahl J, Sukhotin A, Heilmayer O, Philipp E, Brey T, Abele D (2009) A metabolic model for the ocean quahog Arctica islandica—effects of animal mass and age, temperature, salinity, and geography on respiration rate. J Shellfish Res 28:533–539. doi:10.2983/035.028.0315

    Article  Google Scholar 

  • Berge J, Johnsen G, Nilsen F, Gulliksen B, Slagstad D (2005) Ocean temperature oscillations enable reappearance of blue mussels Mytilus edulis in Svalbard after a 1000 year absence. Mar Ecol Prog Ser 303:167–175. doi:10.3354/Meps303167

    Article  Google Scholar 

  • Both C, van Asch M, Bijlsma RG, van den Burg AB, Visser ME (2009) Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? J Anim Ecol 78:73–83. doi:10.1111/j.1365-2656.2008.01458.x

    Article  Google Scholar 

  • Bradshaw WE, Holzapfel CM (2001) Genetic shift in photoperiodic response correlated with global warming. Proc Natl Acad Sci USA 98:14509–14511. doi:10.1073/Pnas.241391498

    Article  CAS  Google Scholar 

  • CAFF (2013) Arctic biodiversity assessment—status and trends in Arctic biodiversity. Conservation of Arctic Flora and Fauna, Akureyri, p 678

    Google Scholar 

  • Clarke A (1980) A reappraisal of the concept of metabolic cold adaptation in polar marine invertebrates. Biol J Linn Soc 14:77–92. doi:10.1111/j.1095-8312.1980.tb00099.x

    Article  Google Scholar 

  • Clarke A (1987) Temperature, latitude and reproductive effort. Mar Ecol Prog Ser 38:89–99. doi:10.3354/Meps038089

    Article  Google Scholar 

  • Clarke A (1993) Seasonal acclimatization and latitudinal compensation in metabolism - do they exist. Funct Ecol 7:139–149. doi:10.2307/2389880

    Article  Google Scholar 

  • Clarke A (2003) Costs and consequences of evolutionary temperature adaptation. Trends Ecol Evol 18:573–581. doi:10.1016/j.tree.2003.08.007

    Article  Google Scholar 

  • Clarke A, Fraser KPP (2004) Why does metabolism scale with temperature? Funct Ecol 18:243–251. doi:10.1111/J.0269-8463.2004.00841.X

    Article  Google Scholar 

  • Clarke A, Johnston NM (1999) Scaling of metabolic rate with body mass and temperature in teleost fish. J Anim Ecol 68:893–905. doi:10.1046/j.1365-2656.1999.00337.x

    Article  Google Scholar 

  • Davenport J (2000) Antarctic ecosystems: models for wider ecological understanding. Caxton Press, Christchurch, p 332

    Google Scholar 

  • Doucet-Beaupre H, Dube C, Breton S, Pörtner HO, Blier PU (2010) Thermal sensitivity of metabolic enzymes in subarctic and temperate freshwater mussels (Bivalvia: Unionoida). J Therm Biol 35:11–20. doi:10.1016/j.jtherbio.2009.10.002

    Article  CAS  Google Scholar 

  • Gaffney PM, Diehl WJ (1986) Growth, condition and specific dynamic action in the mussel Mytilus edulis recovering from starvation. Mar Biol 93:401–409. doi:10.1007/Bf00401108

    Article  Google Scholar 

  • Hamburger K, Mohlenberg F, Randlov A, Riisgård HU (1983) Size, oxygen consumption and growth in the mussel Mytilus edulis. Mar Biol 75:303–306. doi:10.1007/Bf00406016

    Article  Google Scholar 

  • Hatcher A, Grant J, Schofield B (1997) Seasonal changes in the metabolism of cultured mussels (Mytilus edulis L.) from a Nova Scotian inlet: the effects of winter ice cover and nutritive stress. J Exp Mar Biol Ecol 217:63–78. doi:10.1016/S0022-0981(97)00042-7

    Article  CAS  Google Scholar 

  • Hjort C, Funder S (1974) The subfossil occurrence of Mytilus edulis L. in central East Greenland. Boreas 3:23–33. doi:10.1111/j.1502-3885.1974.tb00664.x

    Article  Google Scholar 

  • Holeton GF (1974) Metabolic cold adaptation of polar fish - fact or artifact. Physiol Zool 47:137–152

    Google Scholar 

  • IPCC (2014) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, pp 1132

  • Jansen JM, Pronker AE, Kube S, Sokolowski A, Sola JC, Marquiegui MA, Schiedek D, Bonga SW, Wolowicz M, Hummel H (2007) Geographic and seasonal patterns and limits on the adaptive response to temperature of European Mytilus spp. and Macoma balthica populations. Oecologia 154:23–34. doi:10.1007/S00442-007-0808-X

    Article  Google Scholar 

  • Johnston IA, Calvo J, Guderley H, Fernandez D, Palmer L (1998) Latitudinal variation in the abundance and oxidative capacities of muscle mitochondria in perciform fishes. J Exp Biol 201:1–12

    CAS  Google Scholar 

  • Jones SJ, Lima FP, Wethey DS (2010) Rising environmental temperatures and biogeography: poleward range contraction of the blue mussel, Mytilus edulis L., in the western Atlantic. J Biogeogr 37:2243–2259. doi:10.1111/j.1365-2699.2010.02386.x

    Article  Google Scholar 

  • Jørgensen BB, Richardson K (1996) Eutrophication in coastal marine ecosystems. American Geophysical Union, Washington, D. C, p 267

    Book  Google Scholar 

  • Krause-Jensen D, Marba N, Olesen B, Sejr MK, Christensen PB, Rodrigues J, Renaud PE, Balsby TJS, Rysgaard S (2012) Seasonal sea ice cover as principal driver of spatial and temporal variation in depth extension and annual production of kelp in Greenland. Global Change Biol 18:2981–2994. doi:10.1111/J.1365-2486.2012.02765.X

    Article  Google Scholar 

  • Krogh A (1916) The respiratory exchange of animals and man. Longman, London, p 190

    Google Scholar 

  • Lannig G, Eckerle LG, Serendero I, Sartoris FJ, Fischer T, Knust R, Johansen T, Pörtner HO (2003) Temperature adaptation in eurythermal cod (Gadus morhua): a comparison of mitochondrial enzyme capacities in boreal and Arctic populations. Mar Biol 142:589–599. doi:10.1007/S00227-002-0967-6

    CAS  Google Scholar 

  • Livermore R, Eagles G, Morris P, Maldonado A (2004) Shackleton fracture zone: no barrier to early circumpolar ocean circulation. Geology 32:797–800. doi:10.1130/g20537.1

    Article  Google Scholar 

  • Munday PL, Jones GP, Pratchett MS, Williams AJ (2008) Climate change and the future for coral reef fishes. Fish Fish 9:261–285. doi:10.1111/j.1467-2979.2008.00281.x

    Article  Google Scholar 

  • Newell RC, Pye VI (1970) Seasonal changes in the effect of temperature on the oxygen consumption of the winkle Littorina littorea (L.) and the mussel Mytilus edulis L. Comp Biochem Physiol 34:367–383. doi:10.1016/0010-406X(70)90178-7

    Article  Google Scholar 

  • Nguyen KDT, Morley SA, Lai CH, Clark MS, Tan KS, Bates AE, Peck LS (2011) Upper temperature limits of tropical marine ectotherms: Global warming implications. Plos One 6 doi:10.1371/journal.pone.0029340

  • Nielsen MG, Elmes GW, Kipyatkov VE (1999) Respiratory Q10 varies between populations of two species of Myrmica ants according to the latitude of their sites. J Insect Physiol 45:559–564. doi:10.1016/S0022-1910(98)00162-0

    Article  CAS  Google Scholar 

  • Olesen B, Krause-Jensen D, Marbà N, Christensen PB (2014) Eelgrass (Zostera marina L.) in subarctic Greenland: dense meadows with slow biomass turnover. Mar Ecol Prog Ser In review

  • Parmesan C (2007) Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Global Change Biol 13:1860–1872. doi:10.1111/j.1365-2486.2007.01404.x

    Article  Google Scholar 

  • Peck LS (2005) Prospects for survival in the Southern Ocean: vulnerability of benthic species to temperature change. Antarct Sci 17:497–507. doi:10.1017/S0954102005002920

    Article  Google Scholar 

  • Peck LS, Conway LZ (2000) The myth of metabolic cold adaptation: oxygen consumption in stenothermal Antarctic bivalves. Geol Soc Spec Publ 177:441–450. doi:10.1144/Gsl.Sp.2000.177.01.29

    Article  Google Scholar 

  • Peck LS, Clark MS, Morley SA, Massey A, Rossetti H (2009a) Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Funct Ecol 23:248–256. doi:10.1111/j.1365-2435.2008.01537.x

    Article  Google Scholar 

  • Peck LS, Massey A, Thorne MAS, Clark MS (2009b) Lack of acclimation in Ophionotus victoriae: brittle stars are not fish. Polar Biol 32:399–402. doi:10.1007/s00300-008-0532-y

    Article  Google Scholar 

  • Peck LS, Morley SA, Richard J, Clark MS (2014) Acclimation and thermal tolerance in Antarctic marine ectotherms. J Exp Biol 217:16–22. doi:10.1242/jeb.089946

    Article  Google Scholar 

  • Pernet F, Tremblay R, Comeau L, Guderley H (2007) Temperature adaptation in two bivalve species from different thermal habitats: energetics and remodelling of membrane lipids. J Exp Biol 210:2999–3014. doi:10.1242/Jeb.006007

    Article  Google Scholar 

  • Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915. doi:10.1126/science.1111322

    Article  CAS  Google Scholar 

  • Pörtner HO (2002a) Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp Biochem Physiol A Physiol 132:739–761. doi:10.1016/S1095-6433(02)00045-4

    Article  Google Scholar 

  • Pörtner HO (2002b) Physiological basis of temperature-dependent biogeography: trade-offs in muscle design and performance in polar ectotherms. J Exp Biol 205:2217–2230

    Google Scholar 

  • Pörtner HO (2006) Climate-dependent evolution of Antarctic ectotherms: an integrative analysis. Deep-Sea Res Part II 53:1071–1104. doi:10.1016/J.Dsr2.2006.02.015

    Article  Google Scholar 

  • Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692. doi:10.1126/science.1163156

    Article  Google Scholar 

  • Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97. doi:10.1126/science.1135471

    Article  Google Scholar 

  • Pörtner HO, Playle RC (1998) Cold ocean physiology. Cambridge University Press, Cambridge, p 498

    Book  Google Scholar 

  • Ricciardi A, Bourget E (1998) Weight-to-weight conversion factors for marine benthic macroinvertebrates. Mar Ecol Prog Ser 163:245–251. doi:10.3354/Meps163245

    Article  Google Scholar 

  • Riisgård HU, Randlov A (1981) Energy budgets, growth and filtration rates in Mytilus edulis at different algal concentrations. Mar Biol 61:227–234. doi:10.1007/Bf00386664

    Article  Google Scholar 

  • Schaefer J, Walters A (2010) Metabolic cold adaptation and developmental plasticity in metabolic rates among species in the Fundulus notatus species complex. Funct Ecol 24:1087–1094. doi:10.1111/j.1365-2435.2010.01726.x

    Article  Google Scholar 

  • Scholander PF, Flagg W, Walters V, Irving L (1953) Climatic adaptation in Arctic and tropical poikilotherms. Physiol Zool 26:67–92

    Google Scholar 

  • Sejr MK, Petersen JK, Jensen KT, Rysgaard S (2004) Effects of food concentration on clearance rate and energy budget of the Arctic bivalve Hiatella arctica (L) at subzero temperature. J Exp Mar Biol Ecol 311:171–183. doi:10.1016/j.jembe.2004.05.005

    Article  Google Scholar 

  • Sejr MK, Blicher ME, Rysgaard S (2009) Sea ice cover affects inter-annual and geographic variation in growth of the Arctic cockle Clinocardium ciliatum (Bivalvia) in Greenland. Mar Ecol Prog Ser 389:149–158. doi:10.3354/Meps08200

    Article  Google Scholar 

  • Serreze MC, Barrett AP, Stroeve JC, Kindig DN, Holland MM (2009) The emergence of surface-based Arctic amplification. Cryosphere 3:11–19. doi:10.5194/tc-3-11-2009

    Article  Google Scholar 

  • Sinervo B, Mendez-de-la-Cruz F, Miles DB, Heulin B, Bastiaans E, Cruz MVS, Lara-Resendiz R, Martinez-Mendez N, Calderon-Espinosa ML, Meza-Lazaro RN, Gadsden H, Avila LJ, Morando M, De la Riva IJ, Sepulveda PV, Rocha CFD, Ibarguengoytia N, Puntriano CA, Massot M, Lepetz V, Oksanen TA, Chapple DG, Bauer AM, Branch WR, Clobert J, Sites JW (2010) Erosion of lizard diversity by climate change and altered thermal niches. Science 328:894–899. doi:10.1126/science.1184695

    Article  CAS  Google Scholar 

  • Somero GN, Devries AL (1967) Temperature tolerance of some Antarctic fishes. Science 156:257–258. doi:10.1126/science.156.3772.257

    Article  CAS  Google Scholar 

  • Sommer AM, Pörtner HO (2002) Metabolic cold adaptation in the lugworm Arenicola marina: comparison of a North Sea and a White Sea population. Mar Ecol Prog Ser 240:171–182. doi:10.3354/Meps240171

    Article  Google Scholar 

  • Stillman JH (2003) Acclimation capacity underlies susceptibility to climate change. Science 301:65. doi:10.1126/science.1083073

    Article  CAS  Google Scholar 

  • Sukhotin AA, Abele D, Pörtner HO (2006) Ageing and metabolism of Mytilus edulis: populations from various climate regimes. J Shellfish Res 25:893–899. doi:10.2983/0730-8000

    Article  Google Scholar 

  • Terblanche JS, Clusella-Trullas S, Deere JA, Van Vuuren BJ, Chown SL (2009) Directional evolution of the slope of the metabolic rate – temperature relationship is correlated with climate. Physiol Biochem Zool 82:495–503. doi:10.1086/605361

    Article  Google Scholar 

  • Theisen BF (1973) The growth of Mytilus edulis L. (bivalvia) from Disko and Thule district, Greenland. Ophelia 12:19

    Article  Google Scholar 

  • Thompson RJ, Bayne BL (1972) Active metabolism associated with feeding in the mussel Mytilus edulis L. J Exp Mar Biol Ecol 9:111–124. doi:10.1016/0022-0981(72)90011-1

    Article  CAS  Google Scholar 

  • Thompson RJ, Bayne BL (1974) Some relationships between growth, metabolism and food in the mussel Mytilus edulis. Mar Biol 27:317–326. doi:10.1007/BF00394367

    Article  CAS  Google Scholar 

  • Thorarinsdottir GG, Gunnarsson K (2003) Reproductive cycles of Mytilus edulis L. on the west and east coasts of Iceland. Polar Res 22:217–223. doi:10.1111/j.1751-8369.2003.tb00108.x

    Article  Google Scholar 

  • Torres JJ, Somero GN (1988) Metabolism, enzymic activities and cold adaptation in Antarctic mesopelagic fishes. Mar Biol 98:169–180. doi:10.1007/Bf00391192

    Article  CAS  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395. doi:10.1038/416389a

    Article  CAS  Google Scholar 

  • Watson S-A, Morley S, Bates A, Clark M, Day R, Lamare M, Martin S, Southgate P, Tan K, Tyler P, Peck L (2014) Low global sensitivity of metabolic rate to temperature in calcified marine invertebrates. Oecologia 174:45–54. doi:10.1007/s00442-013-2767-8

    Article  Google Scholar 

  • Wernberg T, Smale DA, Tuya F, Thomsen MS, Langlois TJ, de Bettignies T, Bennett S, Rousseaux CS (2013) An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat Clim Change 3:78–82. doi:10.1038/Nclimate1627

    Article  Google Scholar 

  • Węsławski JM, Kendall MA, Włodarska-Kowalczuk M, Iken K, Kędra M, Legezynska J, Sejr MK (2011) Climate change effects on Arctic fjord and coastal macrobenthic diversity—observations and predictions. Mar Biodiv 41:71–85. doi:10.1007/s12526-010-0073-9

    Article  Google Scholar 

  • White CR, Alton LA, Frappell PB (2012) Metabolic cold adaptation in fishes occurs at the level of whole animal, mitochondria and enzyme. Proc R Soc B-Biol Sci 279:1740–1747. doi:10.1098/rspb.2011.2060

    Article  CAS  Google Scholar 

  • Wohlschlag DE (1960) Metabolism of an Antarctic fish and the phenomenon of cold adaptation. Ecology 41:287–292. doi:10.2307/1930217

    Article  CAS  Google Scholar 

  • Zwerschke N, Bollen M, Molis M, Scrosati R (2013) An environmental stress model correctly predicts unimodal trends in overall species richness and diversity along intertidal elevation gradients. Helgol Mar Res 67:663–674. doi:10.1007/s10152-013-0352-5

    Article  Google Scholar 

Download references

Acknowledgments

The study was financially supported by the 15 June Foundation. JT was supported by the Commission for Scientific Research in Greenland and Aase og Jørgens Münter’s Foundation. The authors wish to thank Kattegatcentret for providing filtrated seawater. We gratefully acknowledge the contributions of Arctic Research Centre (ARC), Aarhus University. SR was supported by the Canada Excellence Research Chair (CERC). This work is a contribution to the Arctic Science Partnership (ASP) asp-net.org.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Thyrring.

Additional information

Communicated by H. Pörtner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thyrring, J., Rysgaard, S., Blicher, M.E. et al. Metabolic cold adaptation and aerobic performance of blue mussels (Mytilus edulis) along a temperature gradient into the High Arctic region. Mar Biol 162, 235–243 (2015). https://doi.org/10.1007/s00227-014-2575-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-014-2575-7

Keywords

Navigation