Skip to main content

Advertisement

Log in

Biological and environmental influences on the trophic ecology of leatherback turtles in the northwest Atlantic Ocean

  • Feature Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Understanding the causes and consequences of variability in trophic status is important for interpreting population dynamics and for identifying important habitats for protected species like marine turtles. In the northwest Atlantic Ocean, many leatherback turtles (Dermochelys coriacea) from distinct breeding stocks throughout the Wider Caribbean region migrate to Canadian waters seasonally to feed, but their trophic status during the migratory and breeding cycle and its implications have not yet been described. In this study, we used stable carbon and nitrogen isotope analyses of bulk skin to characterize the trophic status of leatherbacks in Atlantic Canadian waters by identifying trophic patterns among turtles and the factors influencing those patterns. δ15N values of adult males and females were significantly higher than those of turtles of unknown gender (i.e., presumed to be subadults), and δ15N increased significantly with body size. We found no significant differences among average stable isotope values of turtles according to breeding stock origin. Significant inter-annual variation in δ15N among cohorts probably reflects broad-scale oceanographic variability that drives fluctuations in stable isotope values of nutrient sources transferred through several trophic positions to leatherbacks, variation in baseline isotope values among different overwintering habitats used by leatherbacks, or a combination of both. Our results demonstrate that understanding effects of demographic and physiological factors, as well as oceanographic conditions, on trophic status is key to explaining observed patterns in population dynamics and for identifying important habitats for widely distributed, long-lived species like leatherbacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barnes C, Jennings S, Polunin NVC, Lancaster JE (2008) The importance of quantifying inherent variability when interpreting stable isotope field data. Oecologia 155:227–235

    Article  Google Scholar 

  • Barrow LM, Bjorndal KA, Reich KJ (2008) Effects of preservation method on stable carbon and nitrogen isotope values. Physiol Biochem Zool 81:688–693

    Article  Google Scholar 

  • Bearhop S, Adams CE, Waldron S, Fuller RA, MacLeod H (2004) Determining trophic niche width: a novel approach using stable isotope analysis. J Anim Ecol 73:1007–1012

    Article  Google Scholar 

  • Bearhop S, Phillips RA, McGill R, Cherel Y, Dawson DA, Croxall JP (2006) Stable isotopes indicate sex-specific and long-term individual foraging specialisation in diving seabirds. Mar Ecol Prog Ser 311:157–164

    Article  Google Scholar 

  • Berman-Frank I, Cullen JT, Shaked Y, Sherrell RM, Falkowski PG (2001) Iron availability, cellular iron quotas, and nitrogen fixation in Trichodesmium. Limnol Oceanogr 46:1249–1260

    Article  CAS  Google Scholar 

  • Bjorndal KA (1997) Foraging ecology and nutrition of sea turtles. In: Lutz PL, Musick JA (eds) The biology of sea turtles. CRC Press, Boca Raton, pp 199–232

    Google Scholar 

  • Boecklen WJ, Yarnes CT, Cook BA, James AC (2011) On the use of stable isotopes in trophic ecology. Ann Rev Ecol Evol Syst 42:411–440

    Article  Google Scholar 

  • Bolker BM, Okuyama T, Bjorndal KA, Bolten AB (2007) Incorporating multiple mixed stocks in mixed stock analysis: “many-to-many” analyses. Mol Ecol 16:685–695

    Article  CAS  Google Scholar 

  • Bowen GJ (2010) Isoscapes: spatial pattern in isotopic biogeochemistry. Ann Rev Ecol Evol Syst 38:161–187

    CAS  Google Scholar 

  • Broderick AC, Godley BJ, Hays GC (2001) Trophic status drives interannual variability in nesting numbers of marine turtles. Proc R Soc Lond B 268:1481–1487

    Article  CAS  Google Scholar 

  • Carleton SA, Martínez del Rio C (2005) The effect of cold-induced increased metabolic rate on the rate of 13C and 15 N incorporation in house sparrows (Passer domesticus). Oecologia 114:226–232

    Article  Google Scholar 

  • Caut S, Guirlet E, Angulo E, Das K, Girondot M (2008) Isotope analysis reveals foraging area dichotomy for Atlantic leatherback turtles. PLoS ONE 3(3):e1845. doi:10.1371/journal.pone.0001845

    Article  Google Scholar 

  • Ceriani SA, Roth JD, Evans DR, Weishampel JF, Ehrhart LM (2012) Inferring foraging areas of nesting loggerhead turtles using satellite telemetry and stable isotopes. PLoS ONE 7(9):e45335. doi:10.1371/journal.pone.0045335

    Article  CAS  Google Scholar 

  • Cherel Y, Hobson KA, Guinet C, Vanpe C (2007) Stable isotopes document seasonal changes in trophic niches and winter foraging individual specialization in diving predators from the Southern Ocean. J Anim Ecol 76:826–836

    Article  Google Scholar 

  • DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351

    Article  CAS  Google Scholar 

  • Dodge KL, Logan JM, Lutcavage ME (2011) Foraging ecology of leatherback sea turtles in the Western North Atlantic determined through multi-tissue stable isotope analyses. Mar Biol 158:2813–2824

    Article  Google Scholar 

  • Dodge KL, Galuardi B, Miller TJ, Lutcavage ME (2014) Leatherback turtle movements, dive behavior, and habitat characteristics in ecoregions of the Northwest Atlantic Ocean. PLoS ONE 9(3):e91726. doi:10.1371/journal.pone.0091726

    Article  Google Scholar 

  • Dutton PH, Roden SE, Stewart KR, LaCasella E, Tiwari M, Formia A, Thomé JA, Livingstone SR, Eckert S, Chacón-Chaverri D, Rivalan P, Allman P (2013) Population stock structure of leatherback turtles (Dermochelys coriacea) in the Atlantic revealed using mtDNA and microsatellite markers. Conserv Genet. doi:10.1007/s10592-013-0456-0

  • Eckert SA, Bagley D, Kubis S, Ehrhart L, Johnson C, Stewart K, DeFreese D (2006) Internesting and postnesting movements and foraging habitats of leatherback sea turtles (Dermochelys coriacea) nesting in Florida. Chel Cons Biol 5:239–248

    Article  Google Scholar 

  • Eckert KL, Wallace BP, Frazier JG, Eckert SA, Pritchard PCH (2012) Synopsis of the biological data on the leatherback sea turtle, Dermochelys coriacea (Vandelli, 1761). US Fish and Wildlife Service PO no. 20181-0-0169, Jacksonville, FL, pp 214

  • Flaherty EA, Ben-David M (2010) Overlap and partitioning of the ecological and isotopic niches. Oikos 119:1409–1416

    Article  Google Scholar 

  • Flemming NEC, Houghton JDR, Magill CL, Harrod C (2011) Preservation methods alter stable isotope values in gelatinous zooplankton: implications for interpreting trophic ecology. Mar Biol 158:2141–2146

    Article  Google Scholar 

  • Forero MG, Bortolotti GR, Hobson KA, Donazar JA, Bertelloti M, Blanco G (2002) High trophic overlap within the seabird community of Argentinian Patagonia: a multiscale approach. J Anim Ecol 73:789–801

    Article  Google Scholar 

  • Fossette S, Hobson VJ, Girard C, Calmettes B, Gaspar P, Georges J-Y, Hays GC (2010a) Spatio-temporal foraging patterns of a giant zooplanktivore, the leatherback turtle. J Mar Syst 81:225–234

    Article  Google Scholar 

  • Fossette S, Girard C, López-Mendilaharsu M, Miller P, Domingo A, Evans D, Kelle L, Plot V, Prosdocimi L, Verhage S, Gaspar P, Georges J-Y (2010b) Atlantic leatherback migratory paths and temporary residence areas. PLoS ONE 5(11):e13908. doi:10.1371/journal.pone.0013908

    Article  Google Scholar 

  • Gruber N, Sarmiento JL (1997) Global patterns of marine nitrogen fixation and denitrification. Global Biogeochem Cycles 11:235–266

    Article  CAS  Google Scholar 

  • Hatase H, Takai N, Matsuzawa Y, Sakamoto W, Omuta K, Goto K, Arai N, Fujiwara T (2002) Size-related differences in feeding habitat use of adult female loggerhead turtles Caretta caretta around Japan determined by stable isotope analysis and satellite telemetry. Mar Ecol Prog Ser 233:273–281

    Article  Google Scholar 

  • Heaslip SG, Iverson SJ, Bowen WD, James MJ (2012) Jellyfish support high energy intake of leatherback sea turtles (Dermochelys coriacea): video evidence from animal-borne cameras. PLoS ONE 7(3):e33259. doi:10.1371/journal.pone.0033259

    Article  CAS  Google Scholar 

  • Hobson KA (2008) Applying isotopic methods to tracking animal movements. In: Hobson KA, Wassenaar LI (eds) Tracking animal migration with stable isotopes. Academic Press, Elsevier, London, pp 45–78

    Chapter  Google Scholar 

  • Hobson KA, Norris DR (2008) Animal migration: a context for using new techniques and approaches. In: Hobson KA, Wassenaar LI (eds) Tracking animal migration with stable isotopes. Academic Press, Elsevier, London, pp 1–20

    Chapter  Google Scholar 

  • Hobson KA, Alisauskas RT, Clark RG (1993) Stable nitrogen isotope enrichment in avian tissues due to fasting and nutritional stress: implications for isotopic analyses of diet. Condor 95:388–394

    Article  Google Scholar 

  • Hood RR, Bates NR, Capone DG, Olson DB (2001) Modeling the effect of nitrogen fixation on carbon and nitrogen fluxes at BATS. Deep-Sea Res II 48:1609–1648

    Article  CAS  Google Scholar 

  • Jaeger A, Jaquemet S, Phillips RA, Wanless RM, Richard P, Cherel Y (2013) Stable isotopes document inter-and intra-specific variation in feeding ecology of nine large southern Procellariiformes. Mar Ecol Prog Ser 490:255–266

    Article  CAS  Google Scholar 

  • James MC, Herman TB (2001) Feeding of Dermochelys coriacea on medusae in the northwest Atlantic. Chelonian Conserv Biol 4:202–205

    Google Scholar 

  • James MC, Myers RA, Ottensmeyer CA (2005a) Behaviour of leatherback sea turtles, Dermochelys coriacea, during the migratory cycle. Proc R Soc B 272:1547–1555

    Article  Google Scholar 

  • James MC, Ottensmeyer CA, Myers RA (2005b) Identification of high-use habitat and threats to leatherback sea turtles in northern waters: new directions for conservation. Ecol Lett 8:195–201

    Article  Google Scholar 

  • James MC, Eckert SA, Myers RA (2005c) Migratory and reproductive movements of male leatherback turtles (Dermochelys coriacea). Mar Biol 147:845–853

    Article  Google Scholar 

  • James MC, Sherrill-Mix SA, Martin K, Myers RA (2006) Canadian waters provide critical foraging habitat for leatherback sea turtles. Biol Conserv 133:347–357

    Article  Google Scholar 

  • James MC, Sherrill-Mix SA, Myers RA (2007) Population characteristics and seasonal migrations of leatherback sea turtles at high latitudes. Mar Ecol Prog Ser 337:245–254

    Article  Google Scholar 

  • Jones TT, Hastings MD, Bostrom BL, Pauly D, Jones DR (2011) Growth of captive leatherback turtles, Dermochelys coriacea, with inferences on growth in the wild: implications for population decline and recovery. J Exp Mar Biol Ecol 399:84–92

    Article  Google Scholar 

  • Kojadinovic J, Richard R, Le Corre M, Cosson RP, Bustamante P (2008) Effects of lipid extraction on δ13C and δ15N values in seabird muscle, liver and feathers. Waterbirds 31:169–178

    Article  Google Scholar 

  • Lilley MKS, Beggs SE, Doyle TK, Hobson VJ, Stromberg KHP, Hays GC (2011) Global patterns of epipelagic gelatinous zooplankton biomass. Mar Biol. doi:10.1007/s00227-011-1744-1

    Google Scholar 

  • McMahon KW, Hamady LL, Thorrold SR (2013) A review of ecogeochemistry approaches to estimating movements of marine animals. Limnol Oceanogr 58:697–714

    Article  CAS  Google Scholar 

  • Montoya JP, Carpenter EJ, Capone DG (2002) Nitrogen fixation and nitrogen isotope abundances in zooplankton of the oligotrophic North Atlantic. Limnol Oceanogr 47:1617–1628

    Article  CAS  Google Scholar 

  • National Research Council (NRC) (2010) Assessment of sea turtle status and trends: integrating demography and abundance. National Academies Press, Washington DC

    Google Scholar 

  • Pajuelo M, Bjorndal KA, Alfaro-Shigueto J, Seminoff JA, Mangel JC, Bolten AB (2010) Stable isotope variation in loggerhead turtles reveals Pacific-Atlantic oceanographic differences. Mar Ecol Progr Ser 417:277–285

    Article  Google Scholar 

  • Pajuelo M, Bjorndal KA, Reich KJ, Vander Zanden HB, Hawkes LA, Bolten AB (2012) Assignment of nesting loggerhead turtles to their foraging areas in the Northwest Atlantic using stable isotopes. Ecosphere 3(10):89. doi:10.1890/ES12-00220.1

    Article  Google Scholar 

  • Plot V, Jenkins T, Robin JP, Fossette S, Georges JY (2014) Leatherback turtles are capital breeders: morphometric and physiological evidence from longitudinal monitoring. Physiol Biochem Zool 86:385–397

    Article  Google Scholar 

  • Price ER, Wallace BP, Reina RD, Spotila JR, Paladino RV, Piedra R, Vélez E (2004) Size, growth, and reproductive output of adult female leatherbacks Dermochelys coriacea. Endang Species Res 5:1–8

    Google Scholar 

  • Reich KJ, Bjorndal KA, Bolten AB (2007) The “lost years” of green turtles: using stable isotopes to study cryptic lifestages. Biol Lett 3:714–721

    Google Scholar 

  • Reich KJ, Bjorndal KA, Martínez del Rio C (2008) Effects of growth and tissue type on the kinetics of 13C and 15N incorporation in a rapidly growing ectotherm. Oecologia 155:651–663

    Article  Google Scholar 

  • Richardson AJ, Bakun A, Hays GC, Gibbons MJ (2009) The jellyfish joyride: causes, consequences, and management responses to a more a gelatinous future. TREE. doi:10.1016/j.tree.2009.01.010

    Google Scholar 

  • Saba VS, Santidrián-Tomillo P, Reina RD, Spotila JR, Musick JA, Evans DA, Paladino FV (2007) The effect of the El Niño Southern Oscillation on the reproductive frequency of eastern Pacific leatherback turtles. J Appl Ecol 44:395–404

    Article  Google Scholar 

  • Saba VS, Shillinger GL, Spotila JR, Chavez FP, Musick JA (2008) Bottom-up and climatic forcing on the worldwide population of leatherback turtles. Ecology 89:1414–1427

    Article  Google Scholar 

  • Seminoff JA, Jones TT, Eguchi T, Hastings M, Jones DR (2009) Stable carbon and nitrogen isotope discrimination in soft tissues of the leatherback turtle (Dermochelys coriacea): insights for trophic studies of marine turtles. J Exp Mar Biol Ecol 381:33–41

    Article  CAS  Google Scholar 

  • Seminoff JA, Benson SR, Arthur KE, Eguchi T, Dutton PH, Tapilatu RF, Popp BN (2012) Stable isotope tracking of endangered sea turtles: validation with satellite telemetry and δ15N analysis of amino acids. PLoS ONE 7:e37403. doi:10.1371/journal.pone.0037403

    Article  CAS  Google Scholar 

  • Sherril-Mix SA, James MC, Myers RA (2007) Migration cues and timing in leatherback turtles. Behav Ecol 19:231–236

    Article  Google Scholar 

  • Sotiropoulos MA, Tonn WM, Wassenaar LI (2004) Effects of lipid extraction on stable carbon and nitrogen isotope analyses of fish tissues: potential consequences for food web studies. Ecol Freshw Fish 13:155–160

    Article  Google Scholar 

  • Stewart K, Johnson C, Godfrey MH (2007) The minimum size of leatherbacks at reproductive maturity, with a review of sizes for nesting females from the Indian, Atlantic, and Pacific Ocean basins. Herp J 17:123–128

    Google Scholar 

  • Stewart KR, James MC, Roden S, Dutton PH (2013) Assignment tests, telemetry and tag-recapture data converge to identify natal origins of leatherback turtles foraging in Atlantic Canadian waters. J Anim Ecol. doi:10.1111/1365-2656.12056

    Google Scholar 

  • Suryan RM, Saba VS, Wallace BP, Hatch SA, Frederiksen M, Wanless S (2009) Environmental forcing on life history strategies: evidence for multi-trophic level responses at ocean basin scales. Progr Oceanogr 81:214–222. doi:10.1016/J.Pocean.04.012

    Article  Google Scholar 

  • Sweeting CJ, Polunin NVC, Jennings S (2006) Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. Rapid Commun Mass Spectrom 20:595–601

    Article  CAS  Google Scholar 

  • Townsend DW, Thomas AC, Mayer LM, Thomas MA, Quinlan JA (2006) Oceanography of the Northwest Atlantic continental shelf (1 W). In: Robinson AR, Brink KH (eds) The Sea: The Global Coastal Ocean: Interdisciplinary Regional Studies and Syntheses. Harvard University Press, Cambridge, pp 119–168

    Google Scholar 

  • Turtle Expert Working Group (TEWG) (2007) An assessment of the leatherback turtle population in the Atlantic Ocean. NOAA Technical Memorandum NMFS-SEFSC-555, pp 116

  • Vander Zanden HB, Arthur KA, Bolten AB, Popp BN, Lagueux CJ, Harrison E, Campbell CL, Bjorndal KA (2013) Trophic ecology of a green turtle breeding population. Mar Ecol Prog Ser 476:237–249

    Article  Google Scholar 

  • Wallace BP, Seminoff JA, Kilham SS, Spotila JR, Dutton PH (2006a) Leatherback turtles as oceanographic indicators: stable isotope analyses reveal a trophic dichotomy between ocean basins. Mar Biol 149:953–960

    Article  CAS  Google Scholar 

  • Wallace BP, Kilham SS, Paladino FV, Spotila JR (2006b) Energy budget calculations indicate resource limitation in Eastern Pacific leatherback turtles. Mar Ecol Prog Ser 318:263–270

    Article  Google Scholar 

  • Wallace BP, DiMatteo AD, Bolten AB, Chaloupka MY, Hutchinson BJ et al (2011) Global conservation priorities for marine turtles. PLoS ONE 6(9):e24510. doi:10.371/journalpone.0024510

    Article  CAS  Google Scholar 

  • Zbinden JA, Bearhop S, Bradshaw P, Gill B, Margaritoulis D, Newton J, Godley BJ (2011) Migratory dichotomy and associated phenotypic variation in marine turtles revealed by satellite tracking and stable isotope analysis. Mar Ecol Progr Ser 421:291–302

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by Canadian Wildlife Federation, Environment Canada, Fisheries and Oceans Canada, Habitat Stewardship Program for Species at Risk, National Fish and Wildlife Foundation (USA), and the Natural Sciences and Engineering Research Council of Canada. Fieldwork in Canada was conducted in association with the Canadian Sea Turtle Network, and in accordance with guidelines of the Canadian Council on Animal Care, with review and approval by the Dalhousie University Animal Care Committee (permit numbers 00008, 02053, 04055, 06069, 07077, 08077, 09069 and 11073) and Fisheries and Oceans Canada (license and permit numbers 2001425, 2002550, 2003534, 2004519, MAR-SA-2004004, 2005557, MAR-SA-2006006, 2006526, MARSA-2006006, 2007024, MAR-SA-2007006, 2008454, MAR-SA-2008006, 323395, 323398, 326240 and 332697). Samples were imported into the USA over a span of 10 years under CITES permit 844694/9 and were archived in the NOAA Southwest Fisheries Science Center Marine Mammal and Turtle Molecular Research Sample Collection. We thank employees and volunteers of the Canadian Sea Turtle Network and members of its field research team, including D. Archibald, L. Bennett, B. Fricker, H. Fricker, K. Fricker, K. Hamelin, P. MacDonald, K. Martin, B. Mitchell, and M. Nicholson for collection and organization of samples and other data used in this study. We are grateful to Erin LaCasella (NOAA SWFSC) and D. Archibald (CSTN) for assistance with sample preparation and shipping. We thank P. Dutton, S. Roden, and K. Stewart (NOAA SWFSC) for providing critical insights on stock assignments of Canadian turtles based on distinct northwest Atlantic leatherback breeding stocks. We also thank J. Curtis at the University of Florida for conducting the mass spectrometry analyses, V. Saba and K. McMahon for helpful discussions, and K. Dodge and an anonymous reviewer for helpful comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan P. Wallace.

Additional information

Communicated by R. Lewison.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wallace, B.P., Schumacher, J., Seminoff, J.A. et al. Biological and environmental influences on the trophic ecology of leatherback turtles in the northwest Atlantic Ocean. Mar Biol 161, 1711–1724 (2014). https://doi.org/10.1007/s00227-014-2467-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-014-2467-x

Keywords

Navigation