Skip to main content
Log in

Measuring copepod naupliar abundance in a subtropical bay using quantitative PCR

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Copepod nauplii are important in plankton food web dynamics, but limited information is available about their ecology due to methodological challenges. Reported here is a new molecular method that was developed, optimized, and tested in laboratory and field samples that uses quantitative PCR (qPCR) to identify and estimate the abundance of nauplii of the planktonic copepod, Parvocalanus crassirostris. The overall approach included collection of bulk zooplankton samples in the field, size fractionation to create artificial cohorts of relatively few developmental stages, obtaining DNA copy number for each size fraction by qPCR amplification of a target gene region, and estimation of the number of animals in each fraction through application of known DNA copy number across developmental stage. Method validation studies found that our qPCR-based approach has comparable accuracy to microscope-based counts of early developmental stages. Naupliar abundance estimates obtained using the two methods on cultured populations were similar; the regression of qPCR estimates on microscope-based counts resulted in a nearly 1:1 ratio (slope = 1.09). The qPCR-based method is superior to traditional identification and quantification methods for nauplii due to its higher taxonomic resolution, sensitive detection over a range of DNA quantities, and relatively high throughput sample processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Beaugrand G, Brander KM, Lindley JA, Souissi S, Reid PC (2003) Plankton effect on cod recruitment in the North Sea. Nature 426:661–664. doi:10.1038/nature02164

    Article  CAS  Google Scholar 

  • Beman JM, Popp BN, Alford SE (2012) Quantification of ammonia oxidation rates and ammonia-oxidizing archaea and bacteria at high resolution in the Gulf of California and eastern tropical North Pacific Ocean. Limnol Oceanogr 57:711–726. doi:10.4319/lo.2012.57.3.0711

    Article  CAS  Google Scholar 

  • Björnberg TKS (1966) The developmental stages of Undinula vulgaris (Dana) (Copepoda). Crustaceana 11:65–76

    Article  Google Scholar 

  • Björnberg TKS (1967) The larvae and young forms of Eucalanus dana (Copepoda) from tropical Atlantic waters. Crustaceana 12:59–73

    Article  Google Scholar 

  • Björnberg TKS (2001) The naupliar stages of Cyclopina yutimaete Lotufo (Cyclopinidae, Cyclopoida). Hydrobiologia 453:497–501. doi:10.1023/a:1013118910352

    Article  Google Scholar 

  • Borg CMA, Bruno E, Kiørboe T (2012) The kinematics of swimming and relocation jumps in copepod nauplii. PLoS ONE 7. doi:10.1371/journal.pone.0047486

  • Bott NJ, Ophel-Keller KM, Sierp MT, Herdina, Rowling KP, McKay AC, Loo MGK, Tanner JE, Deveney MR (2010) Toward routine, DNA-based detection methods for marine pests. Biotechnol Adv 28: 706–714. doi 10.1016/j.biotechadv.2010.05.018

  • Böttjer D, Morales CE, Bathmann U (2010) Trophic role of small cyclopoid copepod nauplii in the microbial food web: a case study in the coastal upwelling system off central Chile. Mar Biol 157:689–705. doi:10.1007/s00227-009-1353-4

    Article  Google Scholar 

  • Bradley CJ, Strickler JR, Buskey EJ, Lenz PH (2013) Swimming and escape behavior in two species of calanoid copepods from nauplius to adult. J Plankton Res 35:49–65. doi:10.1093/plankt/fbs088

    Article  Google Scholar 

  • Bruno E, Borg CMA, Kiørboe T (2012) Prey detection and prey capture in copepod nauplii. PLoS ONE 7. doi:10.1371/journal.pone.0047906

  • Bucklin A (2000) Methods for population genetic analysis of zooplankton. In: Harris R, Wiebe P, Lenz J, Skjoldal HR, Huntley M (eds) ICES zooplankton methodology manual. Academic Press, London, pp 533–570

    Chapter  Google Scholar 

  • Bucklin A, Bentley AM, Franzen SP (1998) Distribution and relative abundance of Pseudocalanus moultoni and P. newmani (Copepoda : Calanoida) on Georges Bank using molecular identification of sibling species. Mar Biol 132:97–106. doi:10.1007/s002270050375

    Article  CAS  Google Scholar 

  • Bucklin A, Guarnieri M, Hill RS, Bentley AM, Kaartvedt S (1999) Taxonomic and systematic assessment of planktonic copepods using mitochondrial COI sequence variation and competitive, species-specific PCR. Hydrobiologia 401:239–254. doi:10.1023/a:1003790411424

    Article  CAS  Google Scholar 

  • Bucklin A, Frost BW, Bradford-Grieve J, Allen LD, Copley NJ (2003) Molecular systematic and phylogenetic assessment of 34 calanoid copepod species of the Calanidae and Clausocalanidae. Mar Biol 142:333–343. doi:10.1007/s00227-002-0943-1

    Google Scholar 

  • Bucklin A, Hopcroft RR, Kosobokova KN, Nigro LM, Ortman BD, Jennings RM, Sweetman CJ (2010a) DNA barcoding of Arctic Ocean holozooplankton for species identification and recognition. Deep Sea Res II 57:40–48. doi:10.1016/j.dsr2.2009.08.005

    Article  CAS  Google Scholar 

  • Bucklin A, Ortman BD, Jennings RM, Nigro LM, Sweetman CJ, Copley NJ, Sutton T, Wiebe PH (2010b) A “Rosetta Stone” for metazoan zooplankton: DNA barcode analysis of species diversity of the Sargasso Sea (Northwest Atlantic Ocean). Deep Sea Res II 57:2234–2247. doi:10.1016/j.dsr2.2010.09.025

    Article  CAS  Google Scholar 

  • Burdick DS, Hartline DK, Lenz PH (2007) Escape strategies in co-occurring calanoid copepods. Limnol Oceanogr 52:2373–2385

    Article  Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622. doi:10.1373/clinchem.2008.112797

    Article  CAS  Google Scholar 

  • Calbet A, Landry MR (2004) Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol Oceanogr 49:51–57. doi:10.1093/plankt/23.3.319

    Article  CAS  Google Scholar 

  • Calbet A, Landry MR, Scheinberg RD (2000) Copepod grazing in a subtropical bay: species-specific responses to a midsummer increase in nanoplankton standing stock. Mar Ecol Prog Ser 193:75–84. doi:10.3354/meps193075

    Article  Google Scholar 

  • Calbet A, Garrido S, Saiz E, Alcaraz M, Duarte CM (2001) Annual zooplankton succession in coastal NW Mediterranean waters: the importance of the smaller size fractions. J Plankton Res 23:319–331. doi:10.1093/plankt/23.3.319

    Article  Google Scholar 

  • Campbell RG, Wagner MM, Teegarden GJ, Boudreau CA, Durbin EG (2001) Growth and development rates of the copepod Calanus finmarchicus reared in the laboratory. Mar Ecol Prog Ser 221:161–183. doi:10.3354/meps221161

    Article  Google Scholar 

  • Castellani C, Irigoien X, Mayor DJ, Harris RP, Wilson D (2008) Feeding of Calanus finmarchicus and Oithona similis on the microplankton assemblage in the Irminger Sea, North Atlantic. J Plankton Res 30:1095–1116. doi:10.1093/plankt/fbn074

    Article  CAS  Google Scholar 

  • Church MJ, Jenkins BD, Karl DM, Zehr JP (2005) Vertical distributions of nitrogen-fixing phylotypes at Stn ALOHA in the oligotrophic North Pacific Ocean. Aquat Microb Ecol 38:3–14. doi:10.3354/ame038003

    Article  Google Scholar 

  • Cleary AC, Durbin EG, Rynearson TA (2012) Krill feeding on sediment in the Gulf of Maine (North Atlantic). Mar Ecol Prog Ser 455:157–172. doi:10.3354/meps09632

    Article  CAS  Google Scholar 

  • Costa FO, deWaard JR, Boutillier J, Ratnasingham S, Dooh RT, Hajibabaei M, Hebert PDN (2007) Biological identifications through DNA barcodes: the case of the Crustacea. Can J Fish Aquat Sci 64:272–295. doi:10.1139/f07-008

    Article  CAS  Google Scholar 

  • Cox EF, Ribes M, Kinzie III RA (2006) Temporal and spatial scaling of planktonic responses to nutrient inputs into a subtropical embayment. Mar Ecol Prog Ser 324:19–35. doi:10.3354/meps324019

    Article  CAS  Google Scholar 

  • Darling JA, Blum MJ (2007) DNA-based methods for monitoring invasive species: a review and prospectus. Biol Invasions 9:751–765. doi:10.1007/s10530-006-9079-4

    Article  Google Scholar 

  • Demeke T, Jenkins GR (2010) Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits. Anal Bioanal Chem 396:1977–1990. doi:10.1007/s00216-009-3150-9

    Article  CAS  Google Scholar 

  • Dias PJ, Sollelis L, Cook EJ, Piertney SB, Davies IM, Snow M (2008) Development of a real-time PCR assay for detection of Mytilus species specific alleles: application to a sampling survey in Scotland. J Exp Mar Biol Ecol 367:253–258. doi:10.1016/j.jembe.2008.10.011

    Article  Google Scholar 

  • Durbin EG, Durbin AG (1978) Length and weight relationships of Acartia clausi from Narragansett Bay, Rhode Island. Limnol Oceanogr 23:958–969

    Article  Google Scholar 

  • Durbin AG, Durbin EG (1981) Standing stock and estimated production rates of phytoplankton and zooplankton in Narragansett Bay, Rhode Island. Estuaries 4:24–41

    Article  Google Scholar 

  • Durbin EG, Casas MC, Rynearson TA, Smith DC (2008) Measurement of copepod predation on nauplii using qPCR of the cytochrome oxidase I gene. Mar Biol 153:699–707. doi:10.1007/s00227-007-0843-5

    Article  CAS  Google Scholar 

  • Durbin EG, Casas MC, Rynearson TA (2012) Copepod feeding and digestion rates using prey DNA and qPCR. J Plankton Res 34:72–82. doi:10.1093/plankt/fbr082

    Article  CAS  Google Scholar 

  • Eiane K, Aksnes DL, Ohman MD, Wood S, Martinussen MB (2002) Stage-specific mortality of Calanus spp. under different predation regimes. Limnol Oceanogr 47:636–645

    Article  Google Scholar 

  • Fukatsu T (1999) Acetone preservation: a practical technique for molecular analysis. Mol Ecol 8:1935–1945. doi:10.1046/j.1365-294x.1999.00795.x

    Article  CAS  Google Scholar 

  • Gallienne CP, Robins DB (2001) Is Oithona the most important copepod in the world’s oceans? J Plankton Res 23:1421–1432. doi:10.1093/plankt/23.12.1421

    Article  Google Scholar 

  • Goetze E (2005) Global population genetic structure and biogeography of the oceanic copepods Eucalanus hyalinus and E. spinifer. Evolution 59:2378–2398. doi:10.1554/05-077.1

    CAS  Google Scholar 

  • Grabbert S, Renz J, Hirche HJ, Bucklin A (2010) Species-specific PCR discrimination of species of the calanoid copepod Pseudocalanus, P. acuspesand P. elongatus, in the Baltic and North Seas. Hydrobiologia 652:289–297. doi:10.1007/s10750-010-0360-2

    Article  Google Scholar 

  • Hirst AG, Bunker AJ (2003) Growth of marine planktonic copepods: global rates and patterns in relation to chlorophyll a, temperature, and body weight. Limnol Oceanogr 48:1988–2010. doi:10.2307/3597565

    Article  Google Scholar 

  • Holmborn T, Goetze E, Põllupüü M, Põllumäe A (2011) Genetic species identification and low genetic diversity in Pseudocalanus acuspes of the Baltic Sea. J Plankton Res 33:507–515. doi:10.1093/plankt/fbq113

    Article  Google Scholar 

  • Holzmann M, Pawlowski J (1996) Preservation of foraminifera for DNA extraction and PCR amplification. J Foraminiferal Res 26:264–267

    Article  Google Scholar 

  • Hoover RS, Hoover D, Miller M, Landry MR, De Carlo EH, Mackenzie FT (2006) Zooplankton response to storm runoff in a tropical estuary: bottom-up and top-down controls. Mar Ecol Prog Ser 318:187–201. doi:10.3354/meps318187

    Article  CAS  Google Scholar 

  • Hopcroft RR, Roff JC, Lombard D (1998) Production of tropical copepods in Kingston Harbour, Jamaica: the importance of small species. Mar Biol 130:593–604. doi:10.1007/s002270050281

    Article  Google Scholar 

  • Huntley ME, Lopez MDG (1992) Temperature-dependent production of marine copepods: a global synthesis. Am Nat 140:201–242. doi:10.1086/285410

    Article  CAS  Google Scholar 

  • Jungbluth MJ (2012) Development and demonstration of a quantitative PCR based method to enumerate copepod nauplii in field samples. MS thesis, University of Hawaii, Manoa

  • Jungbluth MJ, Lenz PH (2013) Copepod diversity in a subtropical bay based on a fragment of the mitochondrial COI gene. J Plankton Res 35:630–643. doi:10.1093/plankt/fbt015

    Article  CAS  Google Scholar 

  • Karlen Y, McNair A, Perseguers S, Mazza C, Mermod N (2007) Statistical significance of quantitative PCR. BMC Bioinf 8:131. doi 10.1186/1471-2105-8-131

  • Kiesling TL, Wilkinson E, Rabalais J, Ortner PB, McCabe MM, Fell JW (2002) Rapid identification of adult and naupliar stages of copepods using DNA hybridization methodology. Mar Biotechnol 4:30–39. doi:10.1007/s10126-001-0077-3

    CAS  Google Scholar 

  • Kreader CA (1996) Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl Environ Microbiol 62:1102–1106

    CAS  Google Scholar 

  • Landry MR (1978) Population dynamics and production of a planktonic marine copepod, Acartia clausi, in a small temperate lagoon on San Juan Island, Washington. Int Rev Gesamten Hydrobiol Hydrogr 63:77–119. doi:10.1002/iroh.19780630106

    Article  Google Scholar 

  • Landry MR, Hassett RP (1982) Estimating the grazing impact of marine micro-zooplankton. Mar Biol 67:283–288. doi:10.1007/BF00397668

    Article  Google Scholar 

  • Lawson TJ, Grice GD (1973) The developmental stages of Paracalanus crassirostris Dahl, 1894 (Copepoda, Calanoida). Crustaceana 24:43–56

    Article  Google Scholar 

  • Lee CE, Frost BW (2002) Morphological stasis in the Eurytemora affinis species complex (Copepoda: Temoridae). Hydrobiologia 480:111–128. doi:10.1023/A:1021293203512

    Article  CAS  Google Scholar 

  • Lindeque PK, Harris RP, Jones MB, Smerdon GR (2004) Distribution of Calanus spp. as determined using a genetic identification system. Sci Mar (Barcelona) 68:121–128

    Google Scholar 

  • Lučić D, Njire J, Morović M, Precali R, Fuks D, Bolotin J (2003) Microzooplankton in the open waters of the northern Adriatic Sea from 1990 to 1993: the importance of copepod nauplii densities. Helgol Mar Res 57:73–81

    Google Scholar 

  • Machida RJ, Miya MU, Nishida M, Nishida S (2004) Large-scale gene rearrangements in the mitochondrial genomes of two calanoid copepods Eucalanus bungii and Neocalanus cristatus (Crustacea), with notes on new versatile primers for the srRNA and COI genes. Gene 332:71–78. doi:10.1016/j.gene.2004.01.019

    Article  CAS  Google Scholar 

  • Mackie JA, Geller J (2010) Experimental parameters affecting quantitative PCR of Artemia franciscana: a model for a marine zooplanktonic target in natural plankton samples. Limnol Oceanogr Methods 8:337–347. doi:10.4319/lom.2010.8.337

    Article  CAS  Google Scholar 

  • Mandrioli M, Borsatti F, Mola L (2006) Factors affecting DNA preservation from museum-collected lepidopteran specimens. Entomol Exp Appl 120:239–244. doi:10.1111/j.1570-7458.2006.00451.x

    Article  CAS  Google Scholar 

  • McKinnon AD, Duggan S (2001) Summer egg production rates of paracalanid copepods in subtropical waters adjacent to Australia’s North West Cape. Hydrobiologia 453:121–132. doi:10.1023/A:1013115900841

    Article  Google Scholar 

  • McKinnon AD, Duggan S (2003) Summer copepod production in subtropical waters adjacent to Australia’s North West Cape. Mar Biol 143:897–907. doi:10.1007/s00227-003-1153-1

    Article  Google Scholar 

  • McKinnon AD, Duggan S, Nichols PD, Rimmer MA, Semmens G, Robino B (2003) The potential of tropical paracalanid copepods as live feeds in aquaculture. Aquaculture 223:89–106. doi:10.1016/S0044-8486(03)00161-3

    Article  Google Scholar 

  • McLaren IA, Marcogliese DJ (1983) Similar nucleus numbers among copepods. Can J Zool 61:721–724

    Article  Google Scholar 

  • Möllmann C, Müller-Karulis B, Kornilovs G, St John MA (2008) Effects of climate and overfishing on zooplankton dynamics and ecosystem structure: regime shifts, trophic cascade, and feedback coops in a simple ecosystem. ICES J Mar Sci 65:302–310. doi:10.1093/icesjms/fsm197

    Article  Google Scholar 

  • Nagy ZT (2010) A hands-on overview of tissue preservation methods for molecular genetic analyses. Org Divers Evol 10:91–105. doi:10.1007/s13127-010-0012-4

    Article  Google Scholar 

  • Nejstgaard JC, Frischer ME, Simonelli P, Troedsson C, Brakel M, Adiyaman F, Sazhin AF, Artigas FL (2008) Quantitative PCR to estimate copepod feeding. Mar Biol 153:565–577. doi:10.1007/s00227-007-0830-x

    Article  CAS  Google Scholar 

  • Ortman BD, Bucklin A, Pagès F, Youngbluth M (2010) DNA barcoding the medusozoa using mtCOI. Deep Sea Res II 57:2148–2156. doi:10.1016/j.dsr2.2010.09.017

    Article  CAS  Google Scholar 

  • Paffenhöfer GA, Lewis KD (1989) Feeding behavior of nauplii of the genus Eucalanus (Copepoda, Calanoida). Mar Ecol Prog Ser 57:129–136. doi:10.3354/meps057129

    Article  Google Scholar 

  • Paffenhöfer GA, Lewis KD (1990) Perceptive performance and feeding behavior of calanoid copepods. J Plankton Res 12:933–946. doi:10.1093/plankt/12.5.933

    Article  Google Scholar 

  • Paffenhöfer GA, Strickler JR, Lewis KD, Richman S (1996) Motion behavior of nauplii and early copepodid stages of marine planktonic copepods. J Plankton Res 18:1699–1715. doi:10.1093/plankt/18.9.1699

    Article  Google Scholar 

  • Pan M, McBeath AJA, Hay SJ, Pierce GJ, Cunningham CO (2008) Real-time PCR assay for detection and relative quantification of Liocarcinus depurator larvae from plankton samples. Mar Biol 153:859–870. doi:10.1007/s00227-007-0858-y

    Article  CAS  Google Scholar 

  • Paradis V, Sirois P, Castonguay M, Plourde S (2012) Spatial variability in zooplankton and feeding of larval Atlantic mackerel (Scomber scombrus) in the southern Gulf of St. Lawrence. J Plankton Res 34:1064–1077. doi:10.1093/plankt/fbs063

    Article  Google Scholar 

  • Paul AJ, Coyle KO, Haldorson L (1991) Interannual variations in copepod nauplii prey of larval fish in an Alaskan Bay. ICES J Mar Sci 48:157–165

    Article  Google Scholar 

  • Quicke DLJ, Lopez-Vaamonde C, Belshaw R (1999) Preservation of hymenopteran specimens for subsequent molecular and morphological study. Zool Scr 28:261–267. doi:10.1046/j.1463-6409.1999.00004.x

    Article  Google Scholar 

  • Razouls C, De Bovée F, Kouwenberg J, Desreumaux N (2005–2012) Diversity and geographic distribution of marine planktonic copepods. http://copepodes.obs-banyuls.fr/en. Accessed 1 Dec 2012

  • Reiss RA, Schwert DP, Ashworth AC (1995) Field preservation of coleoptera for molecular-genetic analyses. Environ Entomol 24:716–719

    Google Scholar 

  • Roff JC, Turner JT, Webber MK, Hopcroft RR (1995) Bacterivory by tropical copepod nauplii: extent and possible significance. Aquat Microb Ecol 9:165–175

    Article  Google Scholar 

  • Safi KA, Brian Griffiths F, Hall JA (2007) Microzooplankton composition, biomass and grazing rates along the WOCE SR3 line between Tasmania and Antarctica. Deep Sea Res I 54:1025–1041. doi:10.1016/j.dsr.2007.05.003

    Article  Google Scholar 

  • Saikaly PE, Barlaz MA, de los Reyes III FL (2007) Development of quantitative real-time PCR assays for detection and quantification of surrogate biological warfare agents in building debris and leachate. Appl Environ Microbiol 73:6557–6565. doi:10.1128/aem.00779-07

    Article  CAS  Google Scholar 

  • Sampey A, McKinnon AD, Meekan MG, McCormick MI (2007) Glimpse into guts: overview of the feeding of larvae of tropical shorefishes. Mar Ecol Prog Ser 339:243–257. doi:10.3354/meps339243

    Article  Google Scholar 

  • Savin MC, Martin JL, LeGresley M, Giewat M, Rooney-Varga J (2004) Plankton diversity in the Bay of Fundy as measured by morphological and molecular methods. Microb Ecol 48:51–65. doi:10.1007/s00248-003-1033-8

    Article  CAS  Google Scholar 

  • Scheinberg RD (2004) Food web structure and trophic dynamics of a subtropical plankton community, with an emphasis on appendicularians. PhD Dissertation. University of Hawaii, Manoa

  • Simonelli P, Troedsson C, Nejstgaard JC, Zech K, Larsen JB, Frischer ME (2009) Evaluation of DNA extraction and handling procedures for PCR-based copepod feeding studies. J Plankton Res 31:1465–1474. doi:10.1093/plankt/fbp087

    Article  CAS  Google Scholar 

  • Sullivan BK, Meise CJ (1996) Invertebrate predators of zooplankton on Georges Bank, 1977–1987. Deep Sea Res II 43:1503–1519. doi:10.1016/s0967-0645(96)00043-4

    Article  Google Scholar 

  • Sullivan BK, Costello JH, Van Keuren D (2007) Seasonality of the copepods Acartia hudsonica and Acartia tonsa in Narragansett Bay, RI, USA during a period of climate change. Estuar Coast Shelf S 73:259–267. doi:10.1016/j.ecss.2007.01.018

    Article  Google Scholar 

  • Takahashi T, Uchiyama I (2007) Morphology of the naupliar stages of some Oithona species (Copepoda: Cyclopoida) occurring in Toyama Bay, southern Japan Sea. Plankton Benthos Res 2:12–27

    Article  Google Scholar 

  • Tiselius P, Jonsson PR (1990) Foraging behavior of six calanoid copepods: observations and hydrodynamic analysis. Mar Ecol Prog Ser 66:23–33. doi:10.3354/meps066023

    Article  Google Scholar 

  • Titelman J (2001) Swimming and escape behavior of copepod nauplii: implications for predator-prey interactions among copepods. Mar Ecol Prog Ser 213:203–213. doi:10.3354/meps213203

    Article  Google Scholar 

  • Titelman J, Kiørboe T (2003) Predator avoidance by nauplii. Mar Ecol Prog Ser 247:137–149. doi:10.3354/meps247137

    Article  Google Scholar 

  • Tobe K, Meyer B, Fuentes V (2010) Detection of zooplankton items in the stomach and gut content of larval krill, Euphausia superba, using a molecular approach. Polar Biol 33:407–414. doi:10.1007/s00300-009-0714-2

    Article  Google Scholar 

  • Troedsson C, Frischer ME, Nejstgaard JC, Thompson EM (2007) Molecular quantification of differential ingestion and particle trapping rates by the appendicularian Oikopleura dioica as a function of prey size and shape. Limnol Oceanogr 52:416–427

    Article  CAS  Google Scholar 

  • Troedsson C, Simonelli P, Nägele V, Nejstgaard JC, Frischer ME (2008) Quantification of copepod gut content by differential length amplification quantitative PCR (dla-qPCR). Mar Biol 156:253–259. doi:10.1007/s00227-008-1079-8

    Article  Google Scholar 

  • Turner JT (2004) The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool Stud 43:255–266

    Google Scholar 

  • Turner JT, Tester PA (1992) Zooplankton feeding ecology: bacterivory by metazoan microzooplankton. J Exp Mar Biol Ecol 160:149–167. doi:10.1016/0022-0981(92)90235-3

    Article  Google Scholar 

  • Uye S, Nagano N, Tamaki H (1996) Geographical and seasonal variations in abundance, biomass and estimated production rates of microzooplankton in the inland Sea of Japan. J Oceanogr 52:689–703

    Article  Google Scholar 

  • Vadopalas B, Bouma JV, Jackels CR, Friedman CS (2006) Application of real-time PCR for simultaneous identification and quantification of larval abalone. J Exp Mar Biol Ecol 334:219–228. doi:10.1016/j.jembe.2006.02.005

    Article  CAS  Google Scholar 

  • VanderLugt K, Lenz PH (2008) Management of nauplius production in the paracalanid, Bestiolina similis (Crustacea: Copepoda): Effects of stocking densities and culture dilution. Aquaculture 276:69–77. doi:10.1016/j.aquaculture.2008.01.041

    Article  Google Scholar 

  • Vestheim H, Kaartvedt S, Edvardsen B (2005) State-dependent vertical distribution of the carnivore copepod Pareuchaeta norvegica. J Plankton Res 27:19–26. doi:10.1093/plankt/fbh144

    Article  Google Scholar 

  • Waggett RJ, Buskey EJ (2007) Calanoid copepod escape behavior in response to a visual predator. Mar Biol 150:599–607. doi:10.1007/s00227-006-0384-3

    Article  Google Scholar 

  • Wesche A, Wiltshire KH, Hirche HJ (2007) Overwintering strategies of dominant calanoid copepods in the German Bight, southern North Sea. Mar Biol 151:1309–1320. doi:10.1007/s00227-006-0560-5

    Article  Google Scholar 

  • White JR, Roman MR (1992) Seasonal study of grazing by metazoan zooplankton in mesohaline Chesapeake Bay. Mar Ecol Prog Ser 86:251–261. doi:10.3354/meps086251

    Article  Google Scholar 

  • Wight NA, Suzuki J, Vadopalas B, Friedman CS (2009) Development and optimization of quantitative PCR assays to aid Ostrea lurida carpenter 1864 restoration efforts. J Shellfish Res 28:33–41. doi:10.2983/035.028.0108

    Article  Google Scholar 

  • Wilson IG (1997) Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol 63:3741–3751

    CAS  Google Scholar 

  • Zervoudaki S, Christou ED, Nielsen TG, Siokou-Frangou I, Assimakopoulou G, Giannakourou A, Maar M, Pagou K, Krasakopoulou E, Christaki U, Moraitou-Apostolopoulou M (2007) The importance of small-sized copepods in a frontal area of the Aegean Sea. J Plankton Res 29:317–338. doi:10.1093/plankt/fbm018

    Article  Google Scholar 

  • Zhu F, Massana R, Not F, Marie D, Vaulot D (2005) Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol Ecol 52:79–92. doi:10.1016/j.femsec.2004.10.006

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers for their thoughtful comments on the manuscript.  We thank K. Groom and numerous student volunteers who helped with field sampling, A. Orcine for assistance with molecular work, and S. Brown and A. Millan for equipment loans and help in the laboratory. This work was supported by a grant/cooperative agreement from the National Oceanic and Atmospheric Administration, Project R/HE-3, which is sponsored by the University of Hawaii Sea Grant College Program, SOEST, under Institutional Grant No. NA09OAR4170060 from NOAA Office of Sea Grant, Department of Commerce. The views expressed herein are those of the author(s) and do not necessarily reflect the views of NOAA or any of its subagencies. UNIHI-SEAGRANT-JC-11-20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle J. Jungbluth.

Additional information

Communicated by S. Uthicke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jungbluth, M.J., Goetze, E. & Lenz, P.H. Measuring copepod naupliar abundance in a subtropical bay using quantitative PCR. Mar Biol 160, 3125–3141 (2013). https://doi.org/10.1007/s00227-013-2300-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-013-2300-y

Keywords

Navigation