Skip to main content
Log in

Settlement times of blue crab (Callinectes sapidus) megalopae during flood-tide transport

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Settlement by blue crab (Callinectes sapidus Rathbun) megalopae on artificial settlement substrates was monitored relative to tidal currents throughout ten nights from July to September 1997 in which the phase relationship between tides and the light dark cycle differed. Most megalopae were in intermolt, and the total number settling to collectors sampled at hourly intervals was greater than totals on collectors immersed all night. Maximum settlement occurred at slack water before ebb tide (SBE), with a smaller peak at slack water before flood tide (SBF). These results support the hypothesis that during flood-tide transport (FTT) blue crab megalopae remain swimming during flood tide at night in response to water turbulence and settle in response to the decline in turbulence occurring near SBE. Settlement peaks near SBF can be explained by a behavioral response of megalopae to increasing salinity at the beginning of flood tide, which results in an ascent response lasting only a few minutes. Depth maintenance in the water column is not maintained at SBF because of low water turbulence. Since light inhibits swimming and upward movement into the water column, settlement, and, presumably, transport were reduced when SBE occurred near the times of sunrise and sunset. Collectively, these results suggest that the phase relationship between the tide and light: dark cycles affects FTT, the timing of settlement, and behaviors associated with habitat selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiken DE (1973) Proecdysis, setal development and molt prediction in the American lobster (Homarus americanus). J Fish Res Board Can 30:1337–1344

    Google Scholar 

  • Anger K (1983) Moult cycle and metamorphosis in Hyas araneus larvae (Decapoda, Majidae), reared in the laboratory. Helgol Meersunters 36:285–302

    Article  Google Scholar 

  • Batschelet E (1981) Circular statistics in biology. Academic, London

    Google Scholar 

  • Blanton JO, Amft J, Luettich RA Jr, Hench JL, Churchill JH (1999) Tidal and subtidal fluctuation in temperature, salinity, and pressure for winter 1996 larval ingress experiment — Beaufort Inlet, NC. Fish Oceanogr 8 [Suppl. 2]:134–152

    Article  Google Scholar 

  • Boylan JM, Wenner EL (1993) Settlement of brachyuran megalopae in a South Carolina, USA, estuary. Mar Ecol Prog Ser 97:237–246

    Article  Google Scholar 

  • Brookins KG, Epifanio CE (1985) Abundance of brachyuran larvae in a small coastal inlet over six consecutive tidal cycles. Estuaries 8:60–67

    Article  Google Scholar 

  • Butman CA (1987) Larval settlement of soft-sediment invertebrates: the spatial scales of pattern explained by active habitat selection and the emerging role of hydrodynamical processes. Oceanogr Mar Biol Annu Rev 25:113–165

    Google Scholar 

  • Chatfield C (1996) The analysis of time series. Chapman and Hall, London

    Google Scholar 

  • Chia FS, Buckland-Nieks J, Young CM (1984) Locomotion of marine invertebrate larvae: a review. Can J Zool 62:1205–1222

    Article  Google Scholar 

  • Costlow JD, Bookhout CG (1959) The laval development of Callinectes sapidus Rathbun reared in the laboratory. Biol Bull (Woods Hole) 116:373–396

    Article  Google Scholar 

  • De Vries MC, Tankersley RA, Forward RB Jr, Kirby-Smith WW, Luettich RA Jr (1994) Abundance of estuarine crab larvae is associated with tidal hydrological variables. Mar Biol 118:403–413

    Article  Google Scholar 

  • Dittel AI, Epifanio CE (1982) Seasonal abundance and vertical distribution of crab larvae in Delaware Bay, USA. Estuaries 5:197–202

    Article  Google Scholar 

  • Epifanio CE (1995) Transport of blue crab (Callinectes sapidus) larvae in the waters off the mid-Atlantic states. Bull Mar Sci 57:713–725

    Google Scholar 

  • Epifanio CE, Garvine RW (2001) Larval transport on the Atlantic Continental Shelf of North America: a review. Estuar Coast Sheif Sci 52:51–77

    Article  Google Scholar 

  • Epifanio CE, Masse AK, Gravine RW (1989) Transport of blue crab larvae by surface currents off Delaware Bay, USA. Mar Ecol Prog Ser 54:35–41

    Article  Google Scholar 

  • Forward RB Jr, Rittschof D (1994) Photoresponses of crab larvae in offshore and estuarine waters: implications for transport. J Exp Mar Biol Ecol 182:183–192

    Article  Google Scholar 

  • Forward RB Jr, Tankersley RA (2001) Selective tidal-stream transport of marine animals. Oceanogr. Mar Biol Annu Rev 39:305–353

    Article  Google Scholar 

  • Forward RB Jr, Frankel DAZ, Rittschof D (1994) Molting of megalopae from the blue crab Callinectes sapidus: effects of offshore and estuarine cues. Mar Ecol Prog Ser 113:55–59

    Article  Google Scholar 

  • Forward RB Jr, De Vries MC, Rittschof D, Frankel DAZ, Bischoff JP, Fisher CM, Welch JM (1996) Effects of environmental cues on metamorphosis of the blue crab Callinectes sapidus. Mar Ecol Prog Ser 131:165–177

    Article  Google Scholar 

  • Forward RB Jr, Swanson J, Tankersley RA, Welch JM (1997a) Endogenous swimming rhythms of blue crab, Callinectes sapidus, megalopae: effects of offshore and estuarine cues. Mar Biol 127:621–628

    Article  Google Scholar 

  • Forward RB Jr, Tankersley RA, Blondel D, Rittschof D (1997b) Metamorphosis of the blue crab Callinectes sapidus: effects of humic acids and ammonium. Mar Ecol Prog Ser 157:277–286

    Article  Google Scholar 

  • Forward RB Jr, Tankersley RA, Ritschof D (2002a) Cues for metamorphosis of brachyuran crabs: an overview. Am Zool 41:1108–1122

    Article  Google Scholar 

  • Forward RB Jr, Tankersley RA, Welch JM (2002b) Selective tidal-stream transport of the blue crab Callinectes sapidus: an overview. Bull Mar Sci (in press)

  • Latz MI, Forward RB Jr (1977) The effect of salinity upon phototaxis and geotaxis in a larval crustacean. Biol Bull (Woods Hole) 153:163–179

    Article  CAS  Google Scholar 

  • Little KT, Epifanio CE (1991) Mechanism for the re-invasion of the estuary by two species of brachyuran megalopae. Mar Ecol Prog Ser 68:235–242

    Article  Google Scholar 

  • Marrasé C, Costello JH, Granata T, Strickler JR (1990) Grazing in a turbulent environment: energy dissipation, encounter rates and efficacy of feeding currents in Centropages hamatus. Proc Natl Acad Sci USA 87:1653–1657

    Article  PubMed  Google Scholar 

  • McConaugha JR, Johnson DF, Provenzano AJ, Maris RC (1983) Seasonal distribution of larvae of Callinecles sapidus (Crustacea: Decapoda) in the waters adjacent to Chesapeake Bay. J Crustae Biol 3:582–591

    Article  Google Scholar 

  • Mense DJ, Wenner EL (1989) Distribution and abundance of early life history stages of the blue crab, Callinectes sapidus, in tidal marsh creeks near Charleston, South Carolina. Estuaries 12:157–168

    Article  Google Scholar 

  • Mense DJ, Posey MH, West R, Kincheloe K (1995) Settlement of brachyuran postlarvae along the North Carolina coast. Bull Mar Sci 57:793–806

    Google Scholar 

  • Metealf KS, van Montfrans J, Lipcius RN, Orth RJ (1995) Settlement indices for blue crab megalopae in the York River: temporal relationship and statistical efficiency. Bull Mar Sci 57:781–792

    Google Scholar 

  • Mileikovsky SA (1973) Speed of active movement of pelagic larvae of marine bottom invertebrates and their ability to regulate their vertical position. Mar Biol 23:11–17

    Article  Google Scholar 

  • Moksnes PO, Wennhage H (2001) Methods for estimating decapod larval supply and settlement: importance of larval behavior and development stage. Mar Ecol Prog Ser 209:257–273

    Article  Google Scholar 

  • Olmi EJ III (1994) Vertica migration of blue crab Callinectes sapidus megalopae: implications for transport in estuaries. Mar Ecol Prog Ser 113:39–54

    Article  Google Scholar 

  • Peters F, Gross T (1994) Thereased grazing rates of microplankton in response to small-scale turbulence. Mar Ecol Prog Ser 115:299–307

    Article  Google Scholar 

  • Smyth PO (1980) Callinectes (Decapoda: Portunidae) larvae in the Middle Atlantic Bight, 1975–1977. Fish Bull (Wash DC) 78:251–265

    Google Scholar 

  • SPSS (1998) SYSTAT for Windows, rel. 9.01. SPSS, Chicago

    Google Scholar 

  • Stevenson JR (1985) Dynamics of the integument. In: Bliss DE (ed) The biology of Crastacea, vol 9. Integument, pigments and hormonal processes. Academic. New York, pp 1–42

    Google Scholar 

  • Tankersley RA, Forward RB Jr (1994) Endogenous swimming rhythms in estuarine crab megalopae: implications for flood-tide transport. Mar Biol 118:415–423

    Article  Google Scholar 

  • Tankersley RA, McKelvey LM, Forward RB Jr (1995) Responses of estuarine crab megalopae to pressure, salinity and light: implications for flood-tide transport. Mar Biol 122:391–400

    Article  Google Scholar 

  • Tankersley RA, Wieber MG, Sigala MA, Kachurak KA (1998) Migratory behavior of ovigerous blue crabs Callinectes sapidus: evidence for selective tidal-stream transport. Biol Bull (Woods Hole) 195:168–173

    Article  Google Scholar 

  • Van Montfrans J, Peery CA, Orth RJ (1990) Dally, monthly and annual settlement patterns of Callinectes sapidus and Neopanope sayi megalopae on artificial collectors depioyed in the York River, Virginia: 1985–1988. Bull Mar Sci 46:214–229

    Google Scholar 

  • Welch JM (1998) Behavior of blue crab (Callinectes sapidus) megalopae during transport and settlement site selection: effects of turbulence and chemical cues. PhD dissertation. Duke University. Durham, N.C.

    Google Scholar 

  • Welch JM, Forward RB Jr (2001) Flood tide transport of blue crab, Callinectes sapidus, postlarvae: behavioral responses to salinity and turbulence. Mar Biol 139:911–918

    Article  Google Scholar 

  • Welch JM, Rittschof D, Bullock TM, Forward RB Jr (1997) Effects of chemical cues on settlement behavior of blue crab Callinectes sapidus postlarvae. Mar Ecol Prog Ser 154:143–153

    Article  Google Scholar 

  • Welch JM, Forward RB Jr, Howd PA (1999) Behavioral responses of blue crab Callinectes sapidus postlarvae to turbulence: implications for selective tidal stream transport. Mar Ecol Prog Ser 179:135–143

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Tankersley.

Additional information

Communicated by J.P. Grassle, New Brunswick

Published online: 9 August 2002

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tankersley, R.A., Welch, J.M. & Forward, R.B. Settlement times of blue crab (Callinectes sapidus) megalopae during flood-tide transport. Marine Biology 141, 863–875 (2002). https://doi.org/10.1007/s00227-002-0896-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-002-0896-4

Keywords

Navigation