Skip to main content

Advertisement

Log in

Osteoprotegerin in Chronic Kidney Disease: Associations with Vascular Damage and Cardiovascular Events

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Vascular injury and dysfunction contribute to cardiovascular disease, the leading cause of death in patients with chronic kidney disease (CKD). Osteoprotegerin (OPG) is a soluble member of the tumor necrosis factor receptor superfamily that has been linked to atherogenesis and endothelial dysfunction. Elevated circulating OPG levels predict future cardiovascular events (CVE). Our aim was to evaluate the determinants of circulating OPG levels, to investigate the relationship between OPG and markers of vascular damage and to test whether OPG improves risk stratification for future CVE beyond traditional and renal-specific risk factors in a CKD population. 291 patients with CKD stage 1–5 not on dialysis were included in the study. In the multivariate analysis, OPG was a significant predictor for flow-mediated dilatation, but not for carotid intima media thickness levels. During follow-up (median 36 months, IQR = 32–42 months), 87 patients had CVE. In the Cox survival analysis, OPG levels were independently associated with CVE even after adjustment for traditional and renal-specific cardiovascular risk factors. The addition of OPG to a model based on commonly used cardiovascular factors significantly improved the reclassification abilities of the model for predicting CVE. We show for the first time that OPG improves risk stratification for CVE in a non-dialysis CKD population, above and beyond a model with established traditional and renal-specific cardiovascular risk factors, including estimated glomerular filtration rate and fibroblast growth factor 23.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ortiz A, Covic A, Fliser D et al (2014) Epidemiology, contributors to, and clinical trials of mortality risk in chronic kidney failure. Lancet 383:1831–1843

    Article  PubMed  Google Scholar 

  2. Sarnak MJ, Levey AS (2000) Epidemiology, diagnosis, and management of cardiac disease in chronic renal disease. J Thromb Thrombolysis 10:169–180

    Article  CAS  PubMed  Google Scholar 

  3. Covic A, Kanbay M, Voroneanu L et al (2010) Vascular calcification in chronic kidney disease. Clin Sci (Lond) 119:111–121

    Article  CAS  Google Scholar 

  4. Kalantar-Zadeh K, Block G, Humphreys MH, Kopple JD (2003) Reverse epidemiology of cardiovascular risk factors in maintenance dialysis patients. Kidney Int 63:793–808

    Article  PubMed  Google Scholar 

  5. Kanbay M, Nicoleta M, Selcoki Y et al (2010) Fibroblast growth factor 23 and fetuin A are independent predictors for the coronary artery disease extent in mild chronic kidney disease. Clin J Am Soc Nephrol 5:1780–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Simonet WS, Lacey DL, Dunstan CR et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  CAS  PubMed  Google Scholar 

  7. Collin-Osdoby P (2004) Regulation of vascular calcification by osteoclast regulatory factors RANKL and osteoprotegerin. Circ Res 95:1046–1057

    Article  CAS  PubMed  Google Scholar 

  8. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342

    Article  CAS  PubMed  Google Scholar 

  9. Panizo S, Cardus A, Encinas M et al (2009) RANKL increases vascular smooth muscle cell calcification through a RANK-BMP4-dependent pathway. Circ Res 104:1041–1048

    Article  CAS  PubMed  Google Scholar 

  10. Bucay N, Sarosi I, Dunstan CR et al (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sattler AM, Schoppet M, Schaefer JR, Hofbauer LC (2004) Novel aspects on RANK ligand and osteoprotegerin in osteoporosis and vascular disease. Calcif Tissue Int 74:103–106

    Article  CAS  PubMed  Google Scholar 

  12. Bennett BJ, Scatena M, Kirk EA et al (2006) Osteoprotegerin inactivation accelerates advanced atherosclerotic lesion progression and calcification in older ApoE−/− mice. Arterioscler Thromb Vasc Biol 26:2117–2124

    Article  CAS  PubMed  Google Scholar 

  13. Kiechl S, Schett G, Wenning G et al (2004) Osteoprotegerin is a risk factor for progressive atherosclerosis and cardiovascular disease. Circulation 109:2175–2180

    Article  CAS  PubMed  Google Scholar 

  14. Anand DV, Lahiri A, Lim E, Hopkins D, Corder R (2006) The relationship between plasma osteoprotegerin levels and coronary artery calcification in uncomplicated type 2 diabetic subjects. J Am Coll Cardiol 47:1850–1857

    Article  CAS  PubMed  Google Scholar 

  15. Jorsal A, Tarnow L, Flyvbjerg A, Parving HH, Rossing P, Rasmussen LM (2008) Plasma osteoprotegerin levels predict cardiovascular and all-cause mortality and deterioration of kidney function in type 1 diabetic patients with nephropathy. Diabetologia 51:2100–2107

    Article  CAS  PubMed  Google Scholar 

  16. Ueland T, Jemtland R, Godang K et al (2004) Prognostic value of osteoprotegerin in heart failure after acute myocardial infarction. J Am Coll Cardiol 44:1970–1976

    Article  CAS  PubMed  Google Scholar 

  17. Omland T, Ueland T, Jansson AM et al (2008) Circulating osteoprotegerin levels and long-term prognosis in patients with acute coronary syndromes. J Am Coll Cardiol 51:627–633

    Article  CAS  PubMed  Google Scholar 

  18. Svensson M, Dahle DO, Mjoen G et al (2012) Osteoprotegerin as a predictor of renal and cardiovascular outcomes in renal transplant recipients: follow-up data from the ALERT study. Nephrol Dial Transplant 27:2571–2575

    Article  CAS  PubMed  Google Scholar 

  19. Scialla JJ, Kao WH, Crainiceanu C et al (2014) Biomarkers of vascular calcification and mortality in patients with ESRD. Clin J Am Soc Nephrol 9:745–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. National Kidney Foundation (2003) K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis 42:S1–S201

    Google Scholar 

  21. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 130:461–470

    Article  CAS  PubMed  Google Scholar 

  22. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    CAS  PubMed  Google Scholar 

  23. Celermajer DS, Sorensen KE, Gooch VM et al (1992) Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 340:1111–1115

    Article  CAS  PubMed  Google Scholar 

  24. Corretti MC, Anderson TJ, Benjamin EJ et al (2002) Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol 39:257–265

    Article  PubMed  Google Scholar 

  25. Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148:839–843

    Article  CAS  PubMed  Google Scholar 

  26. Pencina MJ, D’Agostino RB (2004) Overall C as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation. Stat Med 23:2109–2123

    Article  PubMed  Google Scholar 

  27. Pencina MJ, D’Agostino RB Sr, Steyerberg EW (2011) Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med 30:11–21

    Article  PubMed  Google Scholar 

  28. Fang Y, Ginsberg C, Sugatani T, Monier-Faugere MC, Malluche H, Hruska KA (2014) Early chronic kidney disease-mineral bone disorder stimulates vascular calcification. Kidney Int 85:142–150

    Article  CAS  PubMed  Google Scholar 

  29. Moe SM, Radcliffe JS, White KE et al (2011) The pathophysiology of early-stage chronic kidney disease-mineral bone disorder (CKD-MBD) and response to phosphate binders in the rat. J Bone Miner Res 26:2672–2681

    Article  CAS  PubMed  Google Scholar 

  30. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351:1296–1305

    Article  CAS  PubMed  Google Scholar 

  31. Kestenbaum B, Sampson JN, Rudser KD et al (2005) Serum phosphate levels and mortality risk among people with chronic kidney disease. J Am Soc Nephrol 16:520–528

    Article  CAS  PubMed  Google Scholar 

  32. Secchiero P, Corallini F, Pandolfi A et al (2006) An increased osteoprotegerin serum release characterizes the early onset of diabetes mellitus and may contribute to endothelial cell dysfunction. Am J Pathol 169:2236–2244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Corallini F, Rimondi E, Secchiero P (2008) TRAIL and osteoprotegerin: a role in endothelial physiopathology? Front Biosci 13:135–147

    Article  CAS  PubMed  Google Scholar 

  34. Montanez-Barragan A, Gomez-Barrera I, Sanchez-Nino MD, Ucero AC, Gonzalez-Espinoza L, Ortiz A (2014) Osteoprotegerin and kidney disease. J Nephrol 27(6):607–617

    Article  CAS  PubMed  Google Scholar 

  35. Scialla JJ, Leonard MB, Townsend RR et al (2011) Correlates of osteoprotegerin and association with aortic pulse wave velocity in patients with chronic kidney disease. Clin J Am Soc Nephrol 6:2612–2619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yilmaz MI, Stenvinkel P, Sonmez A et al (2011) Vascular health, systemic inflammation and progressive reduction in kidney function; clinical determinants and impact on cardiovascular outcomes. Nephrol Dial Transplant 26:3537–3543

    Article  PubMed  Google Scholar 

  37. Szeto CC, Chow KM, Woo KS et al (2007) Carotid intima media thickness predicts cardiovascular diseases in Chinese predialysis patients with chronic kidney disease. J Am Soc Nephrol 18:1966–1972

    Article  PubMed  Google Scholar 

  38. Nascimento MM, Hayashi SY, Riella MC, Lindholm B (2014) Elevated levels of plasma osteoprotegerin are associated with all-cause mortality risk and atherosclerosis in patients with stages 3 to 5 chronic kidney disease. Braz J Med Biol Res 47:995–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vik A, Mathiesen EB, Brox J et al (2010) Relation between serum osteoprotegerin and carotid intima media thickness in a general population—the Tromso study. J Thromb Haemost 8:2133–2139

    Article  CAS  PubMed  Google Scholar 

  40. Morony S, Tintut Y, Zhang Z et al (2008) Osteoprotegerin inhibits vascular calcification without affecting atherosclerosis in ldlr(−/−) mice. Circulation 117:411–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Landmesser U, Hornig B, Drexler H (2004) Endothelial function: a critical determinant in atherosclerosis? Circulation 109:II27–II33

    Article  PubMed  Google Scholar 

  42. Morena M, Jaussent I, Halkovich A et al (2012) Bone biomarkers help grading severity of coronary calcifications in non dialysis chronic kidney disease patients. PLoS One 7:e36175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ortiz A, Massy ZA, Fliser D et al (2012) Clinical usefulness of novel prognostic biomarkers in patients on hemodialysis. Nat Rev Nephrol 8:141–150

    Article  CAS  Google Scholar 

  44. Sigrist MK, Levin A, Er L, McIntyre CW (2009) Elevated osteoprotegerin is associated with all-cause mortality in CKD stage 4 and 5 patients in addition to vascular calcification. Nephrol Dial Transplant 24:3157–3162

    Article  CAS  PubMed  Google Scholar 

  45. Matsubara K, Stenvinkel P, Qureshi AR et al (2009) Inflammation modifies the association of osteoprotegerin with mortality in chronic kidney disease. J Nephrol 22:774–782

    CAS  PubMed  Google Scholar 

  46. Nishiura R, Fujimoto S, Sato Y et al (2009) Elevated osteoprotegerin levels predict cardiovascular events in new hemodialysis patients. Am J Nephrol 29:257–263

    Article  CAS  PubMed  Google Scholar 

  47. Temmar M, Liabeuf S, Renard C et al (2010) Pulse wave velocity and vascular calcification at different stages of chronic kidney disease. J Hypertens 28:163–169

    Article  CAS  PubMed  Google Scholar 

  48. Kendrick J, Cheung AK, Kaufman JS et al (2011) FGF-23 associates with death, cardiovascular events, and initiation of chronic dialysis. J Am Soc Nephrol 22:1913–1922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Parker BD, Schurgers LJ, Brandenburg VM et al (2010) The associations of fibroblast growth factor 23 and uncarboxylated matrix Gla protein with mortality in coronary artery disease: the Heart and Soul Study. Ann Intern Med 152:640–648

    Article  PubMed  PubMed Central  Google Scholar 

  50. Seiler S, Reichart B, Roth D, Seibert E, Fliser D, Heine GH (2010) FGF-23 and future cardiovascular events in patients with chronic kidney disease before initiation of dialysis treatment. Nephrol Dial Transplant 25:3983–3989

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the patients and personnel involved in the creation of this patient material. The authors would like to express their sincere appreciation to FAVOR (FMF Arthritis Vasculitis and Orphan Diseases Research/www.favor.org.tr) web registries at Gulhane Medical Academy, Institute of Health Sciences for their supports in epidemiological and statistical advisory and invaluable guidance for the preparation of the manuscript. Part of this study was performed by Grant Nos. 1640/01.02.2013 and IDEI-PCE 2011, PN-II-ID-PCE-2011-3-0637 from the University of Medicine and Pharmacy, Iasi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Kanbay.

Ethics declarations

Conflict of Interest

Mahmut Ilker Yilmaz, Dimitrie Siriopol, Mutlu Saglam, Hilmi Umut Unal, Murat Karaman, Mustafa Gezer, Ali Kilinc, Tayfun Eyileten, Ahmet Kerem Guler, İbrahim Aydin, Abdulgaffar Vural, Yusuf Oguz, Adrian Covic, Alberto Ortiz, and Mehmet Kanbay have no conflict of interest.

Human and Animal Rights and Informed Consent

Local ethical committee approved the study protocol and all patients were included in the study after signing informed consent forms.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, M.I., Siriopol, D., Saglam, M. et al. Osteoprotegerin in Chronic Kidney Disease: Associations with Vascular Damage and Cardiovascular Events. Calcif Tissue Int 99, 121–130 (2016). https://doi.org/10.1007/s00223-016-0136-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-016-0136-4

Keywords

Navigation