Skip to main content

Advertisement

Log in

Bone Structure and Estimated Bone Strength in Obese Patients Evaluated by High-Resolution Peripheral Quantitative Computed Tomography

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Obesity is associated with high bone mineral density (BMD), but whether obesity-related higher bone mass increases bone strength and thereby protect against fractures is uncertain. We estimated effects of obesity on bone microarchitecture and estimated strength in 36 patients (12 males and 24 females, age 25–56 years and BMI 33.2–57.6 kg/m2) matched with healthy controls (age 25–54 years and BMI 19.5–24.8 kg/m2) in regard to gender, menopausal status, age (±6 years) and height (±6 cm) using high resolution peripheral quantitative computed tomography and dual energy X-ray absorptiometry. In radius, total bone area and trabecular area were significantly higher in obese patients (both p < 0.04). In tibia, cortical area was larger in obese patients (p < 0.001) compared with controls. Total BMD was higher in tibia (p = 0.03) but not in radius. Trabecular integrity was strengthened in obese patients compared with controls in radius and tibia with higher trabecular number (p = 0.002 and p < 0.001) and lower trabecular spacing (p = 0.01 and p < 0.001). Finite element analysis estimated failure load (FL) was higher in tibia (p < 0.001), but not in radius in obese patients. FL was significantly lower per kg body weight in radius and tibia in obese patients compared with controls (p = 0.007 and p < 0.001). Furthermore, the ratios of FLs between groups were comparable in both sites. These findings suggest that mechanical loading is not the primary mediator of the effects of obesity on estimated FL, and suggest that bone strength adaptations in morbid obesity may be inadequate with respect to the increased mechanical demands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. World Health Statistics (WHO) (2012) World heal organ. WHO, World Health Organization

    Google Scholar 

  2. Felson DT, Zhang Y, Hannan MT, Anderson JJ (1993) Effects of weight and body mass index on bone mineral density in men and women: the Framingham study. J Bone Miner Res 8(5):567–573

    Article  CAS  PubMed  Google Scholar 

  3. Beck TJ, Petit MA, Wu G, LeBoff MS, Cauley JA, Chen Z (2009) Does obesity really make the femur stronger? BMD, geometry, and fracture incidence in the women’s health initiative-observational study. J Bone Miner Res 24(8):1369–1379

    Article  PubMed Central  PubMed  Google Scholar 

  4. Guney E, Kisakol G, Ozgen G, Yilmaz C, Yilmaz R, Kabalak T (2003) Effect of weight loss on bone metabolism: comparison of vertical banded gastroplasty and medical intervention. Obes Surg 13(3):383–388

    Article  PubMed  Google Scholar 

  5. Holecki M, Markiewicz BZ, Chudek J, Więcek A (2010) Changes in bone mineral density and bone turnover markers in obese women after short-term weight loss therapy during a 5-year follow-up. Pol Arch Med Wewn 120(7–8):248–254

    CAS  PubMed  Google Scholar 

  6. Gómez-Ambrosi J, Rodríguez a, Catalán V, Frühbeck G (2008) The bone-adipose axis in obesity and weight loss. Obes Surg 18(9):1134–1143

    Article  PubMed  Google Scholar 

  7. Holecki M, Wiecek A (2010) Relationship between body fat mass and bone metabolism. Pol Arch Med Wewn 120(9):361–366

    CAS  PubMed  Google Scholar 

  8. Cao JJ (2011) Effects of obesity on bone metabolism. J Orthop Surg Res 6:30

    Article  PubMed Central  PubMed  Google Scholar 

  9. Reid IR (2002) Relationships among body mass, its components, and bone. Bone 31(5):547–555

    Article  CAS  PubMed  Google Scholar 

  10. Blum M, Harris SS, Must a, Naumova EN, Phillips SM, Rand WM et al (2003) Leptin, body composition and bone mineral density in premenopausal women. Calcif Tissue Int 73(1):27–32

    Article  CAS  PubMed  Google Scholar 

  11. Prieto-Alhambra D, Premaor MO, Fina Avilés F, Hermosilla E, Martinez-Laguna D, Carbonell-Abella C et al (2012) The association between fracture and obesity is site-dependent: a population-based study in postmenopausal women. J Bone Miner Res 27(2):294–300

    Article  PubMed  Google Scholar 

  12. Reid IR (2010) Fat and bone. Arch Biochem Biophys 503(1):20–27

    Article  CAS  PubMed  Google Scholar 

  13. Gnudi S, Sitta E, Lisi L (2009) Relationship of body mass index with main limb fragility fractures in postmenopausal women. J Bone Miner Metab 27(4):479–484

    Article  PubMed  Google Scholar 

  14. Nielson CM, Marshall LM, Adams AL, LeBlanc ES, Cawthon PM, Ensrud K et al (2011) BMI and fracture risk in older men: the osteoporotic fractures in men study (MrOS). J Bone Miner Res 26(3):496–502

    Article  PubMed Central  PubMed  Google Scholar 

  15. Blake GM, Fogelman I (2009) The clinical role of dual energy X-ray absorptiometry. Eur J Radiol 71(3):406–414

    Article  PubMed  Google Scholar 

  16. Johnell O, Kanis Ja, Oden A, Johansson H, De Laet C, Delmas P et al (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20(7):1185–1194

    Article  PubMed  Google Scholar 

  17. Link TM (2012) Osteoporosis imaging: state of the art and advanced imaging. Radiology 263(1):3–17

    Article  PubMed Central  PubMed  Google Scholar 

  18. Seeman E, Delmas PD (2006) Bone quality-the material and structural basis of bone strength and fragility. N Engl J Med 354(21):2250–2261

    Article  CAS  PubMed  Google Scholar 

  19. Pistoia W, van Rietbergen B, Lochmüller EM, Lill Ca, Eckstein F, Rüegsegger P (2002) Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 30(6):842–848

    Article  CAS  PubMed  Google Scholar 

  20. Sornay-Rendu E, Boutroy S, Vilayphiou N, Claustrat B, Chapurlat RD (2013) In obese postmenopausal women, bone microarchitecture and strength are not commensurate to greater body weight: The Os des Femmes de Lyon (OFELY) Study. J Bone Miner Res 28(7):1679–1687

    Article  CAS  PubMed  Google Scholar 

  21. Sukumar D, Schlussel Y, Riedt CS, Gordon C, Stahl T, Shapses Sa (2011) Obesity alters cortical and trabecular bone density and geometry in women. Osteoporos Int 22(2):635–645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Ng AC, Melton LJ, Atkinson EJ, Achenbach SJ, Holets MF, Peterson JM et al (2013) Relationship of adiposity to bone volumetric density and microstructure in men and women across the adult lifespan. Bone, Elsevier Inc. 55(1):119–125

    Google Scholar 

  23. Hansen S, Shanbhogue V, Folkestad L, Nielsen MMF, Brixen K (2013) Bone microarchitecture and estimated strength in 499 adult Danish women and men: a cross-sectional, population-based high-resolution peripheral quantitative computed tomographic study on peak bone structure. Calcif Tissue Int. doi:10.1007/s00223-013-9808-5

    Google Scholar 

  24. Buie HR, Campbell GM, Klinck RJ, MacNeil Ja, Boyd SK (2007) Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis. Bone 41(4):505–515

    Article  PubMed  Google Scholar 

  25. Burghardt AJ, Kazakia GJ, Ramachandran S, Link TM, Majumdar S (2010) Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J Bone Miner Res 25(5):983–993

    PubMed Central  PubMed  Google Scholar 

  26. Nishiyama KK, Macdonald HM, Buie HR, Hanley DA, Boyd SK (2010) Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study. J Bone Miner Res 25(4):882–890

    PubMed  Google Scholar 

  27. Laib A, Häuselmann HJ, Rüegsegger P (1998) In vivo high resolution 3D-QCT of the human forearm. Technol Heal care 6(5–6):329–337

    CAS  Google Scholar 

  28. Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90(12):6508–6515

    Article  CAS  PubMed  Google Scholar 

  29. Laib A, Hildebrand T, Häuselmann HJ, Rüegsegger P (1997) Ridge number density: a new parameter for in vivo bone structure analysis. Bone 21(6):541–546

    Article  CAS  PubMed  Google Scholar 

  30. Burghardt AJ, Buie HR, Laib A, Majumdar S, Boyd SK (2010) Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT. Bone, Elsevier Inc. 47(3):519–528

    Google Scholar 

  31. Hansen S, Beck Jensen J-E, Rasmussen L, Hauge EM, Brixen K (2010) Effects on bone geometry, density, and microarchitecture in the distal radius but not the tibia in women with primary hyperparathyroidism: A case-control study using HR-pQCT. J Bone Miner Res 25(9):1941–1947

    Article  PubMed  Google Scholar 

  32. Frost HM (2000) The Utah paradigm of skeletal physiology: an overview of its insights for bone, cartilage and collagenous tissue organs. J Bone Miner Metab 18(6):305–316

    Article  CAS  PubMed  Google Scholar 

  33. Fawzy T, Muttappallymyalil J, Sreedharan J, Ahmed A, Alshamsi SOS, Al-Ali MSSHBB et al (2011) Association between body mass index and bone mineral density in patients referred for dual-energy X-ray absorptiometry scan in Ajman, UAE. J Osteoporos 2011:876309

    Article  PubMed Central  PubMed  Google Scholar 

  34. Bredella MA, Torriani M, Ghomi RH, Thomas BJ, Brick DJ, Gerweck AV et al (2011) Determinants of bone mineral density in obese premenopausal women. Bone, Elsevier Inc. 48(4):748–754

    Google Scholar 

  35. Hsu Y-H, Venners Sa, Terwedow Ha, Feng Y, Niu T, Li Z et al (2006) Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women. Am J Clin Nutr 83(1):146–154

    CAS  PubMed  Google Scholar 

  36. Ho-Pham LT, Nguyen ND, Lai TQ, Nguyen TV (2010) Contributions of lean mass and fat mass to bone mineral density: a study in postmenopausal women. BMC Musculoskelet Disord 11:59

    Article  PubMed Central  PubMed  Google Scholar 

  37. Gómez-Cabello A, Ara I, González-Agüero A, Casajús JA, Vicente-Rodríguez G (2012) Fat mass influence on bone mass is mediated by the independent association between lean mass and bone mass among elderly women: A cross-sectional study. Maturitas 74(1):44–53

    Article  PubMed  Google Scholar 

  38. Yoo HJ, Park MS, Yang SJ, Kim TN, Lim KIl, Kang HJ et al (2012) The differential relationship between fat mass and bone mineral density by gender and menopausal status. J Bone Miner Metab 30(1):47–53

    Article  PubMed  Google Scholar 

  39. Bredella MA, Lin E, Gerweck AV, Landa MG, Thomas BJ, Torriani M et al (2012) Determinants of bone microarchitecture and mechanical properties in obese men. J Clin Endocrinol Metab 97(11):4115–4122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Svendsen OL, Hassager C, Skødt V, Christiansen C (1995) Impact of soft tissue on in vivo accuracy of bone mineral measurements in the spine, hip, and forearm: a human cadaver study. J Bone Miner Res 10(6):868–873

    Article  CAS  PubMed  Google Scholar 

  41. Knapp KM, Welsman JR, Hopkins SJ, Fogelman I, Blake GM (2012) Obesity increases precision errors in dual-energy X-ray absorptiometry measurements. J Clin Densitom 15(3):315–319

    Article  PubMed  Google Scholar 

  42. Colt E, Akram M, Javed F, Shane E, Boutroy S (2011) Comparison of the effect of surrounding fat on measurements of BMD by DXA and high resolution quantitative computerized tomography. J Bone Miner Res 26:332–333

    Google Scholar 

Download references

Acknowledgments

Thanks to Peter Hartmund Jørgensen for competent statistical support. Thanks to Steffanie Anthony-Christensen for patient management and the staff at the Osteoporosis Clinic, Odense University Hospital for technical assistance. This work has received grants from the Region of Southern Denmark.

Human and Animal Rights and Informed Consent

All participants provided written informed consent before inclusion, and the study was approved by The Regional Scientific Ethical Committee for Southern Denmark (file no. 2011-0050 and 2009-0069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrine Diemer Frederiksen.

Additional information

The contribution of Stine Andersen and Katrine Diemer Frederiksen should be considered equal.

Authors Stine Andersen, Katrine Diemer Frederiksen, Jeppe Gram, Stinus Hansen and René Klinkby Støving state that they have no conflicts of interest. Author Kim Brixen has received lecture fees from Eli Lilly, Novartis, Servier, Amgen and GlaxoSmithKline, consulting fees from MSD and investigator payments from MSD, Novartis, Amgen and NPS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andersen, S., Frederiksen, K.D., Hansen, S. et al. Bone Structure and Estimated Bone Strength in Obese Patients Evaluated by High-Resolution Peripheral Quantitative Computed Tomography. Calcif Tissue Int 95, 19–28 (2014). https://doi.org/10.1007/s00223-014-9857-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-014-9857-4

Keywords

Navigation