Skip to main content

Advertisement

Log in

Obesity alters cortical and trabecular bone density and geometry in women

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The goal in this study was to determine the relationship between body mass index and trabecular and cortical bone using quantitative computed tomography. A higher body mass index (BMI) was positively associated with trabecular and cortical bone parameters, and serum parathyroid hormone, and negatively associated with cortical volumetric bone mineral density (vBMD) and serum 25-hydroxy-vitamin D. When BMI is greater than 35 kg/m2, adiposity affects vBMD and may explain the higher fracture risk in this population without low BMD.

Introduction

The influence of adult obesity on the trabecular and cortical bone, geometry, and strength has not been fully addressed. The goal in this study was to determine the relationship between body mass index and trabecular and cortical bone mass and geometry, over a wide range of body weights.

Methods

We examined 211 women (25–71 years; BMI 18–57 kg/m2) who were classified into three categories of BMI (kg/m2) including normal-weight (BMI < 25), overweight and obese-class I (BMI 25–35) and obese-class II–III (BMI > 35), and also by menopausal status. Volumetric bone mineral density (mg/cm3), trabecular, and cortical components as well as geometric characteristics at the 4%, 38%, and 66% from the distal tibia were measured by peripheral quantitative computed tomography, and serum was analyzed for parathyroid hormone (PTH) and 25-hydroxy-vitamin D (25OHD).

Results

Higher BMI was associated with greater values of trabecular bone and cortical BMC and area and PTH (r > 0.39, p < 0.001), but lower cortical vBMD and 25OHD (r > −0.27, p < 0.001). When controlling for lower leg muscle area, fat area was inversely associated with cortical vBMD (r = −0.16, p < 0.05). Premenopausal obese women with both higher BMI and PTH had lower cortical vBMD (r < −0.40, p < 0.001). While age is a predictor for most bone variables, fat mass explains more variance for vBMD, and lean mass and 25OHD explain greater variance in geometric and strength indices (p < 0.05).

Conclusions

Severe obesity (BMI > 35) increases trabecular vBMD and in the presence of a higher PTH is associated with a lower cortical vBMD without compromising bone geometry and strength. Whether or not a lower cortical vBMD in obesity influences fracture risk over time needs to be further explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Felson DT, Zhang Y, Hannan MT, Anderson JJ (1993) Effects of weight and body mass index on bone mineral density in men and women: the Framingham study. J Bone Miner Res 8:567–573

    Article  CAS  PubMed  Google Scholar 

  2. Gnudi S, Sitta E, Lisi L (2009) Relationship of body mass index with main limb fragility fractures in postmenopausal women. J Bone Miner Metab 27:479–484

    Article  PubMed  Google Scholar 

  3. Premaor MO, Pilbrow L, Tonkin C, Parker R, Compston J (2009) Obesity and fractures in postmenopausal women. J Bone Miner Res 25:292–297

    Article  Google Scholar 

  4. Holmberg AH, Johnell O, Nilsson PM, Nilsson J, Berglund G, Akesson K (2006) Risk factors for fragility fracture in middle age. A prospective population-based study of 33, 000 men and women. Osteoporos Int 17:1065–1077

    Article  CAS  PubMed  Google Scholar 

  5. Beck TJ, Petit MA, Wu G, LeBoff MS, Cauley JA, Chen Z (2009) Does obesity really make the femur stronger? BMD, geometry, and fracture incidence in the women's health initiative-observational study. J Bone Miner Res 24:1369–1379

    Article  PubMed  Google Scholar 

  6. Compston J (2006) Bone quality: what is it and how is it measured? Arq Bras Endocrinol Metabol 50:579–585

    PubMed  Google Scholar 

  7. Felsenberg D, Boonen S (2005) The bone quality framework: determinants of bone strength and their interrelationships, and implications for osteoporosis management. Clin Ther 27:1–11

    Article  PubMed  Google Scholar 

  8. Seeman E (2003) Bone quality. Osteoporos Int 14:S3–S7

    Article  PubMed  Google Scholar 

  9. Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E (2008) FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19:385–397

    Article  CAS  PubMed  Google Scholar 

  10. De Laet C, Kanis JA, Odén A, Johanson H, Johnell O, Delmas P, Eisman JA, Kroger H, Fujiwara S, Garnero P, McCloskey EV, Mellstrom D, Melton LJ 3rd, Meunier PJ, Pols HA, Reeve J, Silman A, Tenenhouse A (2005) Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 16:1330–1338

    Article  PubMed  Google Scholar 

  11. Formica CA, Nieves JW, Cosman F, Garrett P, Lindsay R (1998) Comparative assessment of bone mineral measurements using dual X-ray absorptiometry and peripheral quantitative computed tomography. Osteoporos Int 8:460–467

    Article  CAS  PubMed  Google Scholar 

  12. Jamal SA, Gilbert J, Gordon C, Bauer DC (2006) Cortical pQCT measures are associated with fractures in dialysis patients. J Bone Miner Res 21:543–548

    Article  PubMed  Google Scholar 

  13. Uusi-Rasi K, Sievänen H, Pasanen M, Kannus P (2007) Age-related decline in trabecular and cortical density: a 5-year peripheral quantitative computed tomography follow-up study of pre- and postmenopausal women. Calcif Tissue Int 81:249–253

    Article  CAS  PubMed  Google Scholar 

  14. Riggs BL, 3rd Melton LJ, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, Rouleau PA, McCollough CH, Bouxsein ML, Khosla S (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19:1945–1954

    Article  PubMed  Google Scholar 

  15. Havill LM, Mahaney MC, Binkley TL, Specker BL (2007) Effects of genes, sex, age, and activity on BMC, bone size, and areal and volumetric BMD. J Bone Miner Res 22:737–746

    Article  PubMed  Google Scholar 

  16. Lindsay R, Cosman F, Herrington BS, Himmelstein S (1992) Bone mass and body composition in normal women. J Bone Miner Res 7:55–63

    Article  CAS  PubMed  Google Scholar 

  17. Sowers MF, Kshirsagar A, Crutchfield MM, Updike S (1992) Joint influence of fat and lean body composition compartments on femoral bone mineral density in premenopausal women. Am J Epidemiol 136:257–265

    CAS  PubMed  Google Scholar 

  18. Reid IR (2002) Relationships among body mass, its components, and bone. Bone 31:547–555

    Article  CAS  PubMed  Google Scholar 

  19. Bolland MJ, Grey AB, Ames RW, Horne AM, Gamble GD, Reid IR (2006) Fat mass is an important predictor of parathyroid hormone levels in postmenopausal women. Bone 38:317–321

    Article  CAS  PubMed  Google Scholar 

  20. Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF (2000) Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 72:690–693

    CAS  PubMed  Google Scholar 

  21. Charopoulos I, Tournis S, Trovas G, Raptou P, Kaldrymides P, Skarandavos G, Katsalira K, Lyritis GP (2006) Effect of primary hyperparathyroidism on volumetric bone mineral density and bone geometry assessed by peripheral quantitative computed tomography in postmenopausal women. J Clin Endocrinol Metab 91:1748–1753

    Article  CAS  PubMed  Google Scholar 

  22. Chen Q, Kaji H, Iu MF, Nomura R, Sowa H, Yamauchi M, Tsukamoto T, Sugimoto Chihara K (2003) Effects of an excess and a deficiency of endogenous parathyroid hormone on volumetric bone mineral density and bone geometry determined by peripheral quantitative computed tomography in female subjects. J Clin Endocrinol Metab 88:4655–4658

    Article  CAS  PubMed  Google Scholar 

  23. Lauretani F, Bandinelli S, Russo CR, Maggio M, Di Iorio A, Cherubini A, Maggio D, Ceda GP, Valenti G, Guralnik JM, Ferrucci L (2006) Correlates of bone quality in older persons. Bone 39:915–921

    Article  CAS  PubMed  Google Scholar 

  24. Taes YE, Lapauw B, Vanbillemont G, Bogaert V, De Bacquer D, Zmierczak H, Goemaere S, Kaufman JM (2009) Fat mass is negatively associated with cortical bone size in young healthy male siblings. J Clin Endocrinol Metab 94:2325–2331

    Article  CAS  PubMed  Google Scholar 

  25. Pollock NK, Laing EM, Baile CA, Hamrick MW, Hall DB, Lewis RD (2007) Is adiposity advantageous for bone strength? A peripheral quantitative computed tomography study in late adolescent females. Am J Clin Nutr 86:1530–1538

    CAS  PubMed  Google Scholar 

  26. Khosla S, Melton LJ 3rd, Achenbach SJ, Oberg AL, Riggs BL (2006) Hormonal and biochemical determinants of trabecular microstructure at the ultradistal radius in women and men. J Clin Endocrinol Metab 91:885–891

    Article  CAS  PubMed  Google Scholar 

  27. Specker BL, Binkley T, Vukovich M, Beare T (2007) Volumetric bone mineral density and bone size in sleep-deprived individuals. Osteoporos Int 18:93–99

    Article  CAS  PubMed  Google Scholar 

  28. Hasegawa Y, Schneider P, Reiners C, Kushida K, Yamazaki K, Hasegawa K, Nagano A (2000) Estimation of the architectural properties of cortical bone using peripheral quantitative computed tomography. Osteoporos Int 11:36–42

    Article  CAS  PubMed  Google Scholar 

  29. Wang MC, Bachrach LK, Van Loan M, Hudes M, Flegal KM, Crawford PB (2005) The relative contributions of lean tissue mass and fat mass to bone density in young women. Bone 37:474–481

    Article  CAS  PubMed  Google Scholar 

  30. Zhao LJ, Liu YJ, Liu PY, Hamilton J, Recker RR, Deng HW (2007) Relationship of obesity with osteoporosis. J Clin Endocrinol Metab 92:1640–1646

    Article  CAS  PubMed  Google Scholar 

  31. Boonen S, Cheng XG, Nijs J, Nicholson PH, Verbeke G, Lesaffre E, Aerssens J, Dequeker J (1997) Factors associated with cortical and trabecular bone loss as quantified by peripheral computed tomography (pQCT) at the ultradistal radius in aging women. Calcif Tissue Int 60:164–170

    Article  CAS  PubMed  Google Scholar 

  32. Hernández ER, Seco C, Cortés-Prieto J, Villa LF, Revilla M, Rico H (2000) Gynecological factors and body mass index as determinants of bone mass in normal postmenopausal women. A study with peripheral quantitative computed tomography (pQCT). Eur J Obstet Gynecol Reprod Biol 92:193–198

    Article  PubMed  Google Scholar 

  33. Ducher G, Bass SL, Naughton GA, Eser P, Telford RD, Daly RM (2009) Overweight children have a greater proportion of fat mass relative to muscle mass in the upper limbs than in the lower limbs: implications for bone strength at the distal forearm. Am J Clin Nutr 90:1104–1111

    Article  CAS  PubMed  Google Scholar 

  34. Jarvinen TL, Kannus P, Sievanen H (2003) Estrogen and bone—a reproductive and locomotive perspective. J Bone Miner Res 18:1921–1931

    Article  PubMed  Google Scholar 

  35. Blum M, Harris SS, Must A, Naumova EN, Phillips SM, Rand WM, Dawson-Hughes B (2003) Leptin, body composition and bone mineral density in premenopausal women. Calcif Tissue Int 73:27–32

    Article  CAS  PubMed  Google Scholar 

  36. Zhao LJ, Jiang H, Papasian CJ, Maulik D, Drees B, Hamilton J, Deng HW (2008) Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J Bone Miner Res 23:17–29

    Article  CAS  PubMed  Google Scholar 

  37. Uusi-Rasi K, Sievanen H, Kannus P, Pasanen M, Kukkonen-Harjula K, Fogelholm M (2009) Influence of weight reduction on muscle performance and bone mass, structure and metabolism in obese premenopausal women. J Musculoskelet Neuronal Interact 9:72–80

    CAS  PubMed  Google Scholar 

  38. Wetzsteon RJ, Petit MA, Macdonald HM, Hughes JM, Beck TJ, McKay HA (2008) Bone structure and volumetric BMD in overweight children: a longitudinal study. J Bone Miner Res 23:1946–1953

    Article  PubMed  Google Scholar 

  39. Orwoll ES (2003) Towards an expanded understanding of the role of the periosteum in skeletal health. J Bone Miner Res 18:949–954

    Article  PubMed  Google Scholar 

  40. Frost H (1989) Mechanical usage, bone mass, bone fragility: a brief overview. In: Kleerekoper M, Krane S (eds) Clinical disorders of bone and mineral metabolism. Liebert, New York, pp 15–40

    Google Scholar 

  41. Hangartner TN, Johnston CC (1990) Influence of fat on bone measurements with dual-energy absorptiometry. Bone Miner 9:71–81

    Article  CAS  PubMed  Google Scholar 

  42. Bolotin HH (1998) A new perspective on the casual influence of soft tissue composition on DXA-measured in vivo bone mineral density. J Bone Miner Res 13:1739–1746

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank H.A. Sobhan for assistance with laboratory analysis, and Dr. M. Watford and for his editorial and scientific review. We also appreciate the clinical assistance of R. Zurfluh. This work was supported by grants from National Institutes of Health (AG12161) and NJAES (0153866) to SS.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Shapses.

Additional information

Funding Source

NIH RO1-AG12161 and NJAES 0153866

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sukumar, D., Schlussel, Y., Riedt, C.S. et al. Obesity alters cortical and trabecular bone density and geometry in women. Osteoporos Int 22, 635–645 (2011). https://doi.org/10.1007/s00198-010-1305-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-010-1305-3

Keywords

Navigation