Skip to main content

Advertisement

Log in

β-Tricalcium Phosphate Induces Apoptosis on Dental Follicle Cells

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Dental stem cells represent a good treatment option in regenerative dentistry. Regeneration of large bone defects can be achieved by a cell-based therapy consisting of osteogenic progenitor cells, such as dental follicle precursor cells (DFCs), in combination with bone substitute material used as a scaffold. A previous trial had shown that β-tricalcium phosphate (TCP) improves the osteogenic differentiation of DFCs. In the present trial, we investigated the attachment, survival, and proliferation of DFCs on TCP in more detail. A high initial cell number was required for the adhesion, attachment, and sufficient proliferation of DFCs on a TCP scaffold. The TCP scaffold released fine soluble particles enriched in TCP eluates that induced cell death and showed typical characteristics of programmed cell death (apoptosis) in DFCs. During cultivation on the TCP scaffold, DFCs showed a highly upregulated expression of antiapoptotic genes but a downregulated expression of proapoptotic markers. In conclusion, TCP supports osteogenic differentiation in DFCs but also induces programmed cell death. Our data suggest that surviving DFCs avoid programmed cell death by inducing antiapoptotic genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4(7):518–524

    Article  PubMed  CAS  Google Scholar 

  2. Polini A, Pisignano D, Parodi M, Quarto R, Scaglione S (2011) Osteoinduction of human mesenchymal stem cells by bioactive composite scaffolds without supplemental osteogenic growth factors. PLoS One 6(10):e26211

    Article  PubMed  CAS  Google Scholar 

  3. Kamitakahara M, Ohtsuki C, Miyazaki T (2008) Behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. J Biomater Appl 23(3):197–212

    Article  PubMed  CAS  Google Scholar 

  4. Wang F-M, Qiu K, Hu T, Wan C-X, Zhou X-D, Gutmann JL (2006) Biodegradable porous calcium polyphosphate scaffolds for the three-dimensional culture of dental pulp cells. Int Endod J 39(6):477–483

    Article  PubMed  Google Scholar 

  5. LeGeros RZ (2008) Calcium phosphate–based osteoinductive materials. Chem Rev 108(11):4742–4753

    Article  PubMed  Google Scholar 

  6. Sánchez-Salcedo S, Balas F, Izquierdo-Barba I, Vallet-Regí M (2009) In vitro structural changes in porous HA/beta-TCP scaffolds in simulated body fluid. Acta Biomater 5(7):2738–2751

    Article  PubMed  Google Scholar 

  7. Rojbani H, Nyan M, Ohya K, Kasugai S (2011) Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect. J Biomed Mater Res A 98(4):488–498

    PubMed  Google Scholar 

  8. Miyamoto S, Shinmyouzu K, Miyamoto I, Takeshita K, Terada T, Takahashi T (2012) Histomorphometric and immunohistochemical analysis of human maxillary sinus-floor augmentation using porous β-tricalcium phosphate for dental implant treatment. Clin Oral Implants Res. doi: 10.1111/j.1600-0501.2011.02396.x

  9. Luan X, Ito Y, Dangaria S, Diekwisch TG (2006) Dental follicle progenitor cell heterogeneity in the developing mouse periodontium. Stem Cells Dev 15(4):595–608

    Article  PubMed  CAS  Google Scholar 

  10. Kemoun P, Narayanan AS, Brunel G et al (2007) Human dental follicle cells acquire cementoblast features under stimulation by BMP-2/-7 and enamel matrix derivatives (EMD) in vitro. Cell Tissue Res 329(2):283–294

    Article  PubMed  CAS  Google Scholar 

  11. Morsczeck C, Gotz W, Schierholz J, Zeilhofer F, Kuhn U, Mohl C, Sippel C, Hoffmann KH (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24(2):155–165

    Article  PubMed  CAS  Google Scholar 

  12. Handa K, Saito M, Yamauchi M, Kiyono T, Sato S, Teranaka T, Sampath Narayanan A (2002) Cementum matrix formation in vivo by cultured dental follicle cells. Bone 31(5):606–611

    Article  PubMed  CAS  Google Scholar 

  13. Viale-Bouroncle S, Bey B, Reichert TE, Schmalz G, Morsczeck C (2011) β-Tricalcium-phosphate stimulates the differentiation of dental follicle cells. J Mater Sci Mater Med 22(7):1719–1724

    Article  PubMed  CAS  Google Scholar 

  14. Horch H-H, Sader R, Pautke C, Neff A, Deppe H, Kolk A (2006) Synthetic, pure-phase beta-tricalcium phosphate ceramic granules (Cerasorb) for bone regeneration in the reconstructive surgery of the jaws. Int J Oral Maxillofac Surg 35(8):708–713

    Article  PubMed  Google Scholar 

  15. Lange T, Schilling AF, Peters F, Mujas J, Wicklein D, Amling M (2011) Size dependent induction of proinflammatory cytokines and cytotoxicity of particulate beta-tricalcium phosphate in vitro. Biomaterials 32(17):4067–4075

    Article  PubMed  CAS  Google Scholar 

  16. Lin K, Yuan W, Wang L, Lu J, Chen L, Wang Z, Chang J (2011) Evaluation of host inflammatory responses of β-tricalciumphosphate bioceramics caused by calcium pyrophosphate impurity using a subcutaneous model. J Biomed Mater Res B 99(2):350–358

    Google Scholar 

  17. Lynch MP, Capparelli C, Stein JL, Stein GS, Lian JB (1998) Apoptosis during bone-like tissue development in vitro. J Cell Biochem 68(1):31–49

    Article  PubMed  CAS  Google Scholar 

  18. Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21(2):115–137

    Article  PubMed  CAS  Google Scholar 

  19. Morsczeck C, Völlner F, Saugspier M, Brandl C, Reichert TE, Driemel O, Schmalz G (2010) Comparison of human dental follicle cells (DFCs) and stem cells from human exfoliated deciduous teeth (SHED) after neural differentiation in vitro. Clin Oral Investig 14(4):433–440

    Article  PubMed  Google Scholar 

  20. Lange T, Schilling AF, Peters F, Haag F, Morlock MM, Rueger JM, Amling M (2009) Proinflammatory and osteoclastogenic effects of beta-tricalciumphosphate and hydroxyapatite particles on human mononuclear cells in vitro. Biomaterials 30(29):5312–5318

    Article  PubMed  CAS  Google Scholar 

  21. Alcaide M, Serrano M-C, Pagani R, Sánchez-Salcedo S, Vallet-Regí M, Portolés M-T (2009) Biocompatibility markers for the study of interactions between osteoblasts and composite biomaterials. Biomaterials 30(1):45–51

    Article  PubMed  CAS  Google Scholar 

  22. Larsen BD, Rampalli S, Burns LE, Brunette S, Dilworth FJ, Megeney LA (2010) Caspase 3/caspase-activated DNase promote cell differentiation by inducing DNA strand breaks. Proc Natl Acad Sci USA 107(9):4230–4235

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Carola Bolay, Ms. Zahra Tayarani, and Mr. Marcel Hoh for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gosau.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viale-Bouroncle, S., Buergers, R., Morsczeck, C. et al. β-Tricalcium Phosphate Induces Apoptosis on Dental Follicle Cells. Calcif Tissue Int 92, 412–417 (2013). https://doi.org/10.1007/s00223-012-9694-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-012-9694-2

Keywords

Navigation