Skip to main content

Advertisement

Log in

β-Tricalcium-phosphate stimulates the differentiation of dental follicle cells

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The use of dental progenitor cells is a straightforward strategy for regenerative dentistry. For example a cell based therapy with dental follicle cells (DFCs) could be a novel therapeutic strategy for the regeneration of oral tissues in the future. For the regeneration of large bone defects for example dental progenitor cells have to be combined with bone substitutes as scaffolds. This study therefore investigated cell attachment (scanning electron microscopy), cell vitality/proliferation (WST-1 assay) and cell differentiation (under in vitro conditions) of human DFCs on synthetic β-tricalcium phosphate (TCP). DFCs showed considerable cell attachment and proliferation on TCP. Moreover, TCP stimulates osteogenic differentiation in comparison to DFCs with a standard protocol. Here, for example, the osteoblast marker bone sialoprotein (BSP) was highly expressed on TCP, but almost absent in differentiated DFCs without TCP. In conclusion, our study shows that TCP is an excellent scaffold for DFCs for oral tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Diekwisch TG. The developmental biology of cementum. Int J Dev Biol. 2001;45(5–6):695–706.

    CAS  Google Scholar 

  2. Ten Cate AR. The development of the periodontium—a largely ectomesenchymally derived unit. Periodontol 2000. 1997;13:9–19.

    Article  CAS  Google Scholar 

  3. Morsczeck C, Gotz W, Schierholz J, Zeilhofer F, Kuhn U, Mohl C, et al. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol. 2005;24(2):155–65.

    Article  CAS  Google Scholar 

  4. Kemoun P, Laurencin-Dalicieux S, Rue J, Farges JC, Gennero I, Conte-Auriol F, et al. Human dental follicle cells acquire cementoblast features under stimulation by BMP-2/-7 and enamel matrix derivatives (EMD) in vitro. Cell Tissue Res. 2007;329(2):283–94.

    Article  CAS  Google Scholar 

  5. Luan X, Ito Y, Dangaria S, Diekwisch TG. Dental follicle progenitor cell heterogeneity in the developing mouse periodontium. Stem Cells Dev. 2006;15(4):595–608.

    Article  CAS  Google Scholar 

  6. Handa K, Saito M, Tsunoda A, Yamauchi M, Hattori S, Sato S, et al. Progenitor cells from dental follicle are able to form cementum matrix in vivo. Connect Tissue Res. 2002;43(2–3):406–8.

    Google Scholar 

  7. Handa K, Saito M, Yamauchi M, Kiyono T, Sato S, Teranaka T, et al. Cementum matrix formation in vivo by cultured dental follicle cells. Bone. 2002;31(5):606–11.

    Article  CAS  Google Scholar 

  8. Morsczeck C, Moehl C, Gotz W, Heredia A, Schaffer TE, Eckstein N, et al. In vitro differentiation of human dental follicle cells with dexamethasone and insulin. Cell Biol Int. 2005;29(7):567–75.

    Article  CAS  Google Scholar 

  9. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA. 2000;97(25):13625–30.

    Article  CAS  Google Scholar 

  10. Zuolin J, Hong Q, Jiali T. Dental follicle cells combined with beta-tricalcium phosphate ceramic: a novel available therapeutic strategy to restore periodontal defects. Med Hypotheses. 2010;75(6):669–70.

    Article  Google Scholar 

  11. Kasaj A, Willershausen B, Reichert C, Gortan-Kasaj A, Zafiropoulos G-G, Schmidt M. Human periodontal fibroblast response to a nanostructured hydroxyapatite bone replacement graft in vitro. Arch Oral Biol. 2008;53(7):683–9.

    Article  CAS  Google Scholar 

  12. Zhang Y-F, Cheng X-R, Chen Y, Shi B, Chen X-H, Xu D-X, et al. Three-dimensional nanohydroxyapatite/chitosan scaffolds as potential tissue engineered periodontal tissue. J Biomater Appl. 2007;21(4):333–49.

    Article  CAS  Google Scholar 

  13. Abe S, Yamaguchi S, Watanabe A, Hamada K, Amagasa T. Hard tissue regeneration capacity of apical pulp derived cells (APDCs) from human tooth with immature apex. Biochem Biophys Res Commun. 2008;371(1):90–3. Juni 20.

    Article  CAS  Google Scholar 

  14. Luan X, Dangaria S, Ito Y, Walker CG, Jin T, Schmidt MK, et al. Neural crest lineage segregation: a blueprint for periodontal regeneration. J Dent Res. 2009;88(9):781–91.

    Article  CAS  Google Scholar 

  15. Honda MJ, Imaizumi M, Suzuki H, Ohshima S, Tsuchiya S, Satomura K. Stem cells isolated from human dental follicles have osteogenic potential. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109(1):149–54. doi:10.1016/j.tripleo.2010.08.004.

    Article  Google Scholar 

  16. Honda MJ, Imaizumi M, Tsuchiya S, Morsczeck C. Dental follicle stem cells and tissue engineering. J Oral Sci. 2010;52(4):541–52.

    Article  Google Scholar 

  17. Morsczeck C, Völlner F, Saugspier M, Brandl C, Reichert TE, Driemel O, et al. Comparison of human dental follicle cells (DFCs) and stem cells from human exfoliated deciduous teeth (SHED) after neural differentiation in vitro. Clin Oral Investig. 2010;14(4):433–40.

    Article  Google Scholar 

  18. Horch H-H, Sader R, Pautke C, Neff A, Deppe H, Kolk A. Synthetic, pure-phase beta-tricalcium phosphate ceramic granules (cerasorb) for bone regeneration in the reconstructive surgery of the jaws. Int J Oral Maxillofac Surg. 2006;35(8):708–13.

    Article  Google Scholar 

  19. Naujoks C, Langenbach F, Berr K, Depprich R, Kübler N, Meyer U, et al. Biocompatibility of osteogenic predifferentiated human cord blood stem cells with biomaterials and the influence of the biomaterial on the process of differentiation. J Biomater Appl. 2011;25(5):497–512.

    Article  CAS  Google Scholar 

  20. Marino G, Rosso F, Cafiero G, Tortora C, Moraci M, Barbarisi M, et al. Beta-tricalcium phosphate 3D scaffold promote alone osteogenic differentiation of human adipose stem cells: in vitro study. J Mater Sci Mater Med. 2010;21(1):353–63.

    Article  CAS  Google Scholar 

  21. Seebach C, Schultheiss J, Wilhelm K, Frank J, Henrich D. Comparison of six bone-graft substitutes regarding to cell seeding efficiency, metabolism and growth behaviour of human mesenchymal stem cells (MSC) in vitro. Injury. 2010;41(7):914–21.

    Article  Google Scholar 

  22. Arnold U, Lindenhayn K, Perka C. In vitro-cultivation of human periosteum derived cells in bioresorbable polymer-TCP-composites. Biomaterials. 2002;23(11):2303–10.

    Article  CAS  Google Scholar 

  23. Stiehler M, Bünger C, Baatrup A, Lind M, Kassem M, Mygind T. Effect of dynamic 3-D culture on proliferation, distribution, and osteogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res A. 2009;89(1):96–107.

    Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Morsczeck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viale-Bouroncle, S., Bey, B., Reichert, T.E. et al. β-Tricalcium-phosphate stimulates the differentiation of dental follicle cells. J Mater Sci: Mater Med 22, 1719–1724 (2011). https://doi.org/10.1007/s10856-011-4345-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4345-0

Keywords

Navigation