Skip to main content

Advertisement

Log in

Osteoclastogenesis is Influenced by Modulation of Gap Junctional Communication with Antiarrhythmic Peptides

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Osteoclasts are formed by the fusion of mononuclear precursor cells of the monocyte–macrophage lineage. Among several putative mechanisms, gap-junctional intercellular communication (GJC) has been proposed to have a role in osteoclast fusion and bone resorption. We examined the role of GJC in osteoclastogenesis and in vitro bone resorption with mouse bone marrow hematopoietic stem cells and RAW 264.7 cells. Blocking of gap junctions with 18-α-glycyrrhetinic acid (18GA) led to inhibition of osteoclastogenesis and in vitro bone resorption. Similarly, the GJC inhibitor GAP27 inhibited osteoclast formation. GJC modulation with the antiarrhythmic peptides (AAPs) led to increased amounts of multinuclear RAW 264.7 osteoclasts as well as increased number of nuclei per multinuclear cell. In the culture of bone marrow hematopoietic stem cells in the presence of bone marrow stromal cells AAP reduced the number of osteoclasts, and coculture of MC3T3-E1 preosteoblasts with RAW 264.7 macrophages prevented the action of AAPs to promote osteoclastogenesis. The present data indicate that AAPs modulate the fusion of the pure culture of cells of the monocyte–macrophage lineage. However, the fusion is influenced by GJC in cells of the osteoblast lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yeager M, Unger VM, Falk MM (1998) Synthesis, assembly and structure of gap junction intercellular channels. Curr Opin Struct Biol 8:517–524

    Article  PubMed  CAS  Google Scholar 

  2. Lo CW (1999) Genes, gene knockouts, and mutations in the analysis of gap junctions. Dev Genet 24:1–4

    Article  PubMed  CAS  Google Scholar 

  3. Civitelli R (2008) Cell–cell communication in the osteoblast/osteocyte lineage. Arch Biochem Biophys 473:188–192

    Article  PubMed  CAS  Google Scholar 

  4. Doty SB (1981) Morphological evidence of gap junctions between bone cells. Calcif Tissue Int 33:509–512

    Article  PubMed  CAS  Google Scholar 

  5. Jones SJ, Gray C, Sakamaki H, Arora M, Boyde A, Gourdie R, Green C (1993) The incidence and size of gap junctions between the bone cells in rat calvaria. Anat Embryol (Berl) 187:343–352

    Article  CAS  Google Scholar 

  6. Ilvesaro J, Väänänen K, Tuukkanen J (2000) Bone-resorbing osteoclasts contain gap-junctional connexin-43. J Bone Miner Res 15:919–926

    Article  PubMed  CAS  Google Scholar 

  7. Ransjo M, Sahli J, Lie A (2003) Expression of connexin 43 mRNA in microisolated murine osteoclasts and regulation of bone resorption in vitro by gap junction inhibitors. Biochem Biophys Res Commun 303:1179–1185

    Article  PubMed  CAS  Google Scholar 

  8. Axelsen LN, Haugan K, Stahlhut M, Kjolbye AL, Hennan JK, Holstein-Rathlou NH, Petersen JS, Nielsen MS (2007) Increasing gap junctional coupling: a tool for dissecting the role of gap junctions. J Membr Biol 216:23–35

    Article  PubMed  CAS  Google Scholar 

  9. Kjolbye AL, Knudsen CB, Jepsen T, Larsen BD, Petersen JS (2003) Pharmacological characterization of the new stable antiarrhythmic peptide analog Ac-d-Tyr-d-Pro-D-Hyp-Gly-d-Ala-Gly-NH2 (ZP123): in vivo and in vitro studies. J Pharmacol Exp Ther 306:1191–1199

    Article  PubMed  CAS  Google Scholar 

  10. Jörgensen NR, Teilmann SC, Henriksen Z, Meier E, Hansen SS, Jensen JE, Sorensen OH, Petersen JS (2005) The antiarrhythmic peptide analog rotigaptide (ZP123) stimulates gap junction intercellular communication in human osteoblasts and prevents decrease in femoral trabecular bone strength in ovariectomized rats. Endocrinology 146:4745–4754

    Article  PubMed  Google Scholar 

  11. Clarke TC, Thomas D, Petersen JS, Evans WH, Martin PE (2006) The antiarrhythmic peptide rotigaptide (ZP123) increases gap junction intercellular communication in cardiac myocytes and HeLa cells expressing connexin 43. Br J Pharmacol 147:486–495

    Article  PubMed  CAS  Google Scholar 

  12. Stahlhut M, Petersen JS, Hennan JK, Ramirez MT (2006) The antiarrhythmic peptide rotigaptide (ZP123) increases connexin 43 protein expression in neonatal rat ventricular cardiomyocytes. Cell Commun Adhes 13:21–27

    Article  PubMed  CAS  Google Scholar 

  13. Lakkakorpi P, Tuukkanen J, Hentunen T, Järvelin K, Väänänen K (1989) Organization of osteoclast microfilaments during the attachment to bone surface in vitro. J Bone Miner Res 4:817–825

    Article  PubMed  CAS  Google Scholar 

  14. Ilvesaro J, Tavi P, Tuukkanen J (2001) Connexin-mimetic peptide Gap 27 decreases osteoclastic activity. BMC Musculoskelet Disord 2:10

    Article  PubMed  CAS  Google Scholar 

  15. Schilling AF, Filke S, Lange T, Gebauer M, Brink S, Baranowsky A, Zustin J, Amling M (2008) Gap junctional communication in human osteoclasts in vitro and in vivo. J Cell Mol Med 12:2497–2504

    Article  PubMed  CAS  Google Scholar 

  16. Matemba SF, Lie A, Ransjö M (2006) Regulation of osteoclastogenesis by gap junction communication. J Cell Biochem 99:528–537

    Article  PubMed  CAS  Google Scholar 

  17. Axelsen LN, Stahlhut M, Mohammed S, Larsen BD, Nielsen MS, Holstein-Rathlou NH, Andersen S, Jensen ON, Hennan JK, Kjolbye AL (2006) Identification of ischemia-regulated phosphorylation sites in connexin43: a possible target for the antiarrhythmic peptide analogue rotigaptide (ZP123). J Mol Cell Cardiol 40:790–798

    Article  PubMed  CAS  Google Scholar 

  18. Butera JA, Larsen BD, Hennan JK, Kerns E, Di L, Alimardanov A, Swillo RE, Morgan GA, Liu K, Wang Q, Rossman EI, Unwalla R, McDonald L, Huselton C, Petersen JS (2009) Discovery of (2S,4R)-1-(2-aminoacetyl)-4-benzamidopyrrolidine-2-carboxylic acid hydrochloride (GAP-134)13, an orally active small molecule gap-junction modifier for the treatment of atrial fibrillation. J Med Chem 52:908–911

    Article  PubMed  CAS  Google Scholar 

  19. Hennan JK, Swillo RE, Morgan GA, Keith JC Jr, Schaub RG, Smith RP, Feldman HS, Haugan K, Kantrowitz J, Wang PJ, bu-Qare A, Butera J, Larsen BD, Crandall DL (2006) Rotigaptide (ZP123) prevents spontaneous ventricular arrhythmias and reduces infarct size during myocardial ischemia/reperfusion injury in open-chest dogs. J Pharmacol Exp Ther 317:236–243

    Article  PubMed  CAS  Google Scholar 

  20. Watkins M, Grimston SK, Norris JY, Guillotin B, Shaw A, Beniash E, Civitelli R (2011) Osteoblast connexin43 modulates skeletal architecture by regulating both arms of bone remodeling. Mol Biol Cell 22:1240–1251

    Article  PubMed  CAS  Google Scholar 

  21. Yagi M, Ninomiya K, Fujita N, Suzuki T, Iwasaki R, Morita K, Hosogane N, Matsuo K, Toyama Y, Suda T, Miyamoto T (2007) Induction of DC-STAMP by alternative activation and downstream signaling mechanisms. J Bone Miner Res 22:992–1001

    Article  PubMed  CAS  Google Scholar 

  22. Yang M, Birnbaum MJ, MacKay CA, Mason-Savas A, Thompson B, Odgren PR (2008) Osteoclast stimulatory transmembrane protein (OC-STAMP), a novel protein induced by RANKL that promotes osteoclast differentiation. J Cell Physiol 215:497–505

    Article  PubMed  CAS  Google Scholar 

  23. Haugan K, Olsen KB, Hartvig L, Petersen JS, Holstein-Rathlou NH, Hennan JK, Nielsen MS (2005) The antiarrhythmic peptide analog ZP123 prevents atrial conduction slowing during metabolic stress. J Cardiovasc Electrophysiol 16:537–545

    Article  PubMed  Google Scholar 

  24. Xing D, Kjolbye AL, Nielsen MS, Petersen JS, Harlow KW, Holstein-Rathlou NH, Martins JB (2003) ZP123 increases gap junctional conductance and prevents reentrant ventricular tachycardia during myocardial ischemia in open chest dogs. J Cardiovasc Electrophysiol 14:510–520

    Article  PubMed  Google Scholar 

  25. Eloff BC, Gilat E, Wan X, Rosenbaum DS (2003) Pharmacological modulation of cardiac gap junctions to enhance cardiac conduction: evidence supporting a novel target for antiarrhythmic therapy. Circulation 108:3157–3163

    Article  PubMed  CAS  Google Scholar 

  26. Spray DC, Harris AL, Bennett MV (1981) Gap junctional conductance is a simple and sensitive function of intracellular pH. Science 211:712–715

    Article  PubMed  CAS  Google Scholar 

  27. Arnett TR, Dempster DW (1986) Effect of pH on bone resorption by rat osteoclasts in vitro. Endocrinology 119:119–124

    Article  PubMed  CAS  Google Scholar 

  28. Stahlhut M, Petersen JS, Hennan JK, Ramirez MT (2006) The antiarrhythmic peptide rotigaptide (ZP123) increases connexin 43 protein expression in neonatal rat ventricular cardiomyocytes. Cell Commun Adhes 13:21–27

    Article  PubMed  CAS  Google Scholar 

  29. Ilvesaro J, Väänänen K, Tuukkanen J (2000) Bone-resorbing osteoclasts contain gap-junctional connexin-43. J Bone Miner Res 15:919–926

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juha Tuukkanen.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kylmäoja, E., Kokkonen, H., Kauppinen, K. et al. Osteoclastogenesis is Influenced by Modulation of Gap Junctional Communication with Antiarrhythmic Peptides. Calcif Tissue Int 92, 270–281 (2013). https://doi.org/10.1007/s00223-012-9680-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-012-9680-8

Keywords

Navigation