Skip to main content
Log in

Unimodular hyperbolic triangulations: circle packing and random walk

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We show that the circle packing type of a unimodular random plane triangulation is parabolic if and only if the expected degree of the root is six, if and only if the triangulation is amenable in the sense of Aldous and Lyons [1]. As a part of this, we obtain an alternative proof of the Benjamini–Schramm Recurrence Theorem [19]. Secondly, in the hyperbolic case, we prove that the random walk almost surely converges to a point in the unit circle, that the law of this limiting point has full support and no atoms, and that the unit circle is a realisation of the Poisson boundary. Finally, we show that the simple random walk has positive speed in the hyperbolic metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. There is an additional constraint regarding boundaries of faces of infinite degree. However, this condition is automatically satisfied for triangulations and for simply connected maps, so that we need not worry about it in this paper.

References

  1. Aldous, D., Lyons, R.: Processes on unimodular random networks. Electron. J. Probab. 12(54), 1454–1508 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ancona, A., Lyons, R., Peres, Y.: Crossing estimates and convergence of Dirichlet functions along random walk and diffusion paths. Ann. Probab. 27(2), 970–989 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Angel, O.: Growth and percolation on the uniform infinite planar triangulation. Geom. Funct. Anal. 13(5), 935–974 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Angel, O., Barlow, M.T., Gurel-Gurevich, O., Nachmias, A.: Boundaries of planar graphs, via circle packings. Ann. Probab. arXiv:1311.3363. (to appear)

  5. Angel, O., Chapuy, G., Curien, N., Ray, G.: The local limit of unicellular maps in high genus. Elec. Commun. Prob. 18, 1–8 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Angel, O., Curien, N.: Percolations on random maps I: half-plane models. Ann. Inst. Henri Poincaré Probab. Stat. 51(2), 405–431 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Angel, O., Hutchcroft, T., Nachmias, A., Ray, G.: Hyperbolic and parabolic unimodular random maps (In preparation)

  8. Angel, O., Nachmias, A., Ray, G.: Random walks on stochastic hyperbolic half planar triangulations. In: Random Structures Algorithms. arXiv:1408.4196. (To appear)

  9. Angel, O., Ray, G.: Classification of half-planar maps. Ann. Probab. 43(3), 1315–1349 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Angel, O., Schramm, O.: Uniform infinite planar triangulations. Commun. Math. Phys. 241(2–3), 191–213 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Beardon, A.F., Stephenson, K.: Circle packings in different geometries. Tohoku Math. J. (2) 43(1), 27–36 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Benjamini, I., Curien, N.: Ergodic theory on stationary random graphs. Electron. J. Probab. 17(93):20 (2012)

  13. Benjamini, I., Curien, N.: Simple random walk on the uniform infinite planar quadrangulation: subdiffusivity via pioneer points. Geom. Funct. Anal. 23(2), 501–531 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Benjamini, I., Lyons, R., Schramm, O.: Percolation perturbations in potential theory and random walks. In: Random walks and discrete potential theory (Cortona, 1997). Sympos. Math. XXXIX, 56–84. Cambridge University Press, Cambridge (1999)

  15. Benjamini, I., Paquette, E., Pfeffer, J.: Anchored expansion, speed, and the hyperbolic Poisson Voronoi tessellation. ArXiv e-prints (2014)

  16. Benjamini, I., Schramm, O.: Harmonic functions on planar and almost planar graphs and manifolds, via circle packings. Invent. Math. 126(3), 565–587 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Benjamini, I., Schramm, O.: Random walks and harmonic functions on infinite planar graphs using square tilings. Ann. Probab. 24(3), 1219–1238 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Benjamini, I., Schramm, O.: Percolation in the hyperbolic plane. J. Am. Math. Soc 14(2), 487–507 (2001). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  19. Benjamini, I., Schramm, O.: Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6(23), 1–13 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Curien, N.: Planar stochastic hyperbolic triangulations. Probab. Theory Relat. Fields 1–32 (2015)

  21. Curien, N., Miermont, G.: Uniform infinite planar quadrangulations with a boundary. Random Struct. Algorithms 47(1), 30–58 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Furstenberg, H.: A Poisson formula for semi-simple Lie groups. Ann. Math. 77(2), 335–386 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  23. Georgakopoulos, A.: The boundary of a square tiling of a graph coincides with the poisson boundary. Invent. Math. (to appear)

  24. Gurel-Gurevich, O., Nachmias, A.: Recurrence of planar graph limits. Ann. Math. (2) 177(2), 761–781 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hansen, L.J.: On the Rodin and Sullivan ring lemma. Complex Variab. Theory Appl. 10(1), 23–30 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  27. He, Z.-X., Schramm, O.: Fixed points, Koebe uniformization and circle packings. Ann. Math. (2) 137(2), 369–406 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. He, Z.-X., Schramm, O.: Hyperbolic and parabolic packings. Discrete Comput. Geom. 14(2), 123–149 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kaimanovich, V.A.: Measure-theoretic boundaries of Markov chains, 0-2 laws and entropy. In: Proceedings of the Conference on Harmonic Analysis and Discrete Potential Theory, pp. 145–180 (Frascati, Plenum, 1991)

  30. Kesten, H.: Symmetric random walks on groups. Trans. Am. Math. Soc. 92, 336–354 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  31. Koebe, P.: Kontaktprobleme der konformen Abbildung, Hirzel (1936)

  32. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J. Comput. 9(3), 615–627 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lyons, R., Peres, Y.: Probability on Trees and Networks. Cambridge University Press, Cambridge (2015). http://mypage.iu.edu/~rdlyons/. (In preparation)

  34. Miller, G.L., Teng, S.-H., Thurston, W., Vavasis, S.A.: Separators for sphere-packings and nearest neighbor graphs. J. ACM 44(1), 1–29 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pete, G.: Probability and geometry on groups (2014). http://www.math.bme.hu/~gabor/PGG.pdf

  36. Ray, G.: Hyperbolic random maps. PhD thesis, UBC (2014)

  37. Rodin, B., Sullivan, D.: The convergence of circle packings to the Riemann mapping. J. Differ. Geom. 26(2), 349–360 (1987)

    MathSciNet  MATH  Google Scholar 

  38. Rohde, S.: Oded Schramm: from circle packing to SLE. Ann. Probab. 39, 1621–1667 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Schramm, O.: Rigidity of infinite (circle) packings. J. Am. Math. Soc. 4(1), 127–149 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  40. Stephenson, K.: Circle Pack, Java 2.0. http://www.math.utk.edu/~kens/CirclePack

  41. Stephenson, K.: Introduction to circle packing. In: The Theory of Discrete Analytic Functions. Cambridge University Press, Cambridge (2005)

  42. Thurston, W.P.: The Geometry and Topology of 3-Manifolds. Princeton Lecture Notes, Princeton, pp. 1978–1981

  43. Virág, B.: Anchored expansion and random walk. Geom. Funct. Anal. 10(6), 1588–1605 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  44. Woess, W.: Random walks on infinite graphs and groups. In: Cambridge Tracts in Mathematics, vol. 138. Cambridge University Press, Cambridge (2000)

Download references

Acknowledgments

OA is supported in part by NSERC. AN is supported by the Israel Science Foundation Grant 1207/15 as well as NSERC and NSF grants. GR is supported in part by the Engineering and Physical Sciences Research Council under Grant EP/103372X/1. All circle packings above were generated using Ken Stephenson’s CirclePack software [40]. We thank Ken for his assistance using this software and for useful conversations. We also thank the referee for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asaf Nachmias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angel, O., Hutchcroft, T., Nachmias, A. et al. Unimodular hyperbolic triangulations: circle packing and random walk. Invent. math. 206, 229–268 (2016). https://doi.org/10.1007/s00222-016-0653-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-016-0653-9

Navigation