Skip to main content
Log in

Conditional proof of the Boltzmann-Sinai ergodic hypothesis

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We consider the system of N (≥ 2) elastically colliding hard balls of masses m 1,…,m N and radius r on the flat unit torus \(\mathbb{T}^{\nu}\) , ν≥2. We prove the so called Boltzmann-Sinai Ergodic Hypothesis, i.e. the full hyperbolicity and ergodicity of such systems for every selection (m 1,…,m N ;r) of the external parameters, provided that almost every singular orbit is geometrically hyperbolic (sufficient), i.e. the so called Chernov-Sinai Ansatz is true. The present proof does not use the formerly developed, rather involved algebraic techniques, instead it employs exclusively dynamical methods and tools from geometric analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bálint, P., Chernov, N., Szász, D., Tóth, I.P.: Multidimensional semidispersing billiards: singularities and the fundamental theorem. Ann. H. Poincaré 3(3), 451–482 (2002)

    Article  MATH  Google Scholar 

  2. Bunimovich, L.A., Rehacek, J.: Nowhere dispersing 3D billiards with nonvanishing Lyapunov exponents. Commun. Math. Phys. 189(3), 729–757 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bunimovich, L.A., Rehacek, J.: How high-dimensional stadia look like. Commun. Math. Phys. 197(2), 277–301 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Burago, D., Ferleger, S., Kononenko, A.: Uniform estimates on the number of collisions in semi-dispersing billiards. Ann. Math. 147, 695–708 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chernov, N.I.: Construction of transverse fiberings in multidimensional semi-dispersed billiards. Funct. Anal. Appl. 16(4), 270–280 (1982)

    Article  MathSciNet  Google Scholar 

  6. Chernov, N.I.: Statistical properties of the periodic Lorentz gas. Multidimensional case. J. Stat. Phys. 74(1/2), 11–54 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chernov, N.I., Haskell, C.: Nonuniformly hyperbolic K-systems are Bernoulli. Ergodic Theory Dyn. Syst. 16, 19–44 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chernov, N.I., Simányi, N.: Flow-invariant hypersurfaces in semi-dispersing billiards. Ann. H. Poincaré 8, 475–483 (2007)

    Article  MATH  Google Scholar 

  9. Engelking, R.: Dimension Theory. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  10. Galperin, G.: On systems of locally interacting and repelling particles moving in space. Trudy MMO 43, 142–196 (1981)

    MathSciNet  Google Scholar 

  11. Katok, A., Burns, K.: Infinitesimal Lyapunov functions, invariant cone families and stochastic properties of smooth dynamical systems. Ergodic Theory Dyn. Syst. 14(4), 757–785 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Krámli, A., Simányi, N., Szász, D.: Ergodic properties of semi-dispersing billiards I. Two cylindric scatterers in the 3-D torus. Nonlinearity 2, 311–326 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. Krámli, A., Simányi, N., Szász, D.: A “transversal” fundamental theorem for semi-dispersing billiards. Commun. Math. Phys. 129, 535–560 (1990)

    Article  MATH  Google Scholar 

  14. Krámli, A., Simányi, N., Szász, D.: Erratum. A “transversal” fundamental theorem for semi-dispersing billiards. Commun. Math. Phys. 138, 207–208 (1991)

    Article  MATH  Google Scholar 

  15. Krámli, A., Simányi, N., Szász, D.: The K-property of three billiard balls. Ann. Math. 133, 37–72 (1991)

    Article  Google Scholar 

  16. Krámli, A., Simányi, N., Szász, D.: The K-property of four billiard balls. Commun. Math. Phys. 144, 107–148 (1992)

    Article  MATH  Google Scholar 

  17. Liverani, C., Wojtkowski, M.: Ergodicity in Hamiltonian systems. Dyn. Rep. 4, 130–202 (1995). arXiv:math.DS/9210229

    MathSciNet  Google Scholar 

  18. Ornstein, D., Weiss, B.: On the Bernoulli nature of systems with some hyperbolic structure. Ergodic Theory Dyn. Syst. 18, 441–456 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Simányi, N.: The K-property of N billiard balls I. Invent. Math. 108, 521–548 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  20. Simányi, N.: The K-property of N billiard balls II. Invent. Math. 110, 151–172 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  21. Simányi, N.: The complete hyperbolicity of cylindric billiards. Ergodic Theory Dyn. Syst. 22, 281–302 (2002)

    Article  MATH  Google Scholar 

  22. Simányi, N.: Proof of the Boltzmann-Sinai ergodic hypothesis for typical hard disk systems. Invent. Math. 154(1), 123–178 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Simányi, N.: Proof of the ergodic hypothesis for typical hard ball systems. Ann. H. Poincaré 5, 203–233 (2004)

    Article  MATH  Google Scholar 

  24. Simányi, N., Szász, D.: Hard ball systems are completely hyperbolic. Ann. Math. 149, 35–96 (1999)

    Article  MATH  Google Scholar 

  25. Simányi, N., Szász, D.: Non-integrability of cylindric billiards and transitive Lie group actions. Ergodic Theory Dyn. Syst. 20, 593–610 (2000)

    Article  MATH  Google Scholar 

  26. Sinai, Ya.G.: On the foundation of the ergodic hypothesis for a dynamical system of statistical mechanics. Sov. Math. Dokl. 4, 1818–1822 (1963)

    MathSciNet  Google Scholar 

  27. Sinai, Ya.G.: Dynamical systems with countably multiple Lebesgue spectrum II. Am. Math. Soc. Transl. 68(2), 34–38 (1968)

    Google Scholar 

  28. Sinai, Ya.G.: Dynamical systems with elastic reflections. Russ. Math. Surv. 25(2), 137–189 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sinai, Ya.G.: Development of Krylov’s ideas. Afterword to N.S. Krylov’s “Works on the foundations of statistical physics”. Princeton University Press (1979)

  30. Sinai, Ya.G., Chernov, N.I.: Ergodic properties of certain systems of 2-D discs and 3-D balls. Russ. Math. Surv. 42(3), 181–207 (1987)

    Article  MathSciNet  Google Scholar 

  31. Szász, D.: The K-property of ‘orthogonal’ cylindric billiards. Commun. Math. Phys. 160, 581–597 (1994)

    Article  MATH  Google Scholar 

  32. Vaserstein, L.N.: On systems of particles with finite range and/or repulsive interactions. Commun. Math. Phys. 69, 31–56 (1979)

    Article  Google Scholar 

  33. Wojtkowski, M.P.: Invariant families of cones and Lyapunov exponents. Ergodic Theory Dyn. Syst. 5, 145–161 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  34. Wojtkowski, M.P.: Measure theoretic entropy of the system of hard spheres. Ergodic Theory Dyn. Syst. 8, 133–153 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  35. Wojtkowski, M.P.: Systems of classical interacting particles with non-vanishing Lyapunov exponents. In: Lecture Notes in Mathematics, vol. 1486, pp. 243–262 (1990)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nándor Simányi.

Additional information

Dedicated to Yakov G. Sinai and Domokos Szász.

Research supported by the National Science Foundation, grants DMS-0457168, DMS-0800538.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simányi, N. Conditional proof of the Boltzmann-Sinai ergodic hypothesis. Invent. math. 177, 381–413 (2009). https://doi.org/10.1007/s00222-009-0182-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-009-0182-x

Mathematics Subject Classification (2000)

Navigation