Skip to main content
Log in

Allocation of attention for dissociated visual and motor goals

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In daily life, selecting an object visually is closely intertwined with processing that object as a potential goal for action. Since visual and motor goals are typically identical, it remains unknown whether attention is primarily allocated to a visual target, a motor goal, or both. Here, we dissociated visual and motor goals using a visuomotor adaptation paradigm, in which participants reached toward a visual target using a computer mouse or a stylus pen, while the direction of the cursor was rotated 45° counter-clockwise from the direction of the hand movement. Thus, as visuomotor adaptation was accomplished, the visual target was dissociated from the movement goal. Then, we measured the locus of attention using an attention-demanding rapid serial visual presentation (RSVP) task, in which participants detected a pre-defined visual stimulus among the successive visual stimuli presented on either the visual target, the motor goal, or a neutral control location. We demonstrated that before visuomotor adaptation, participants performed better when the RSVP stream was presented at the visual target than at other locations. However, once visual and motor goals were dissociated following visuomotor adaptation, performance at the visual and motor goals was equated and better than performance at the control location. Therefore, we concluded that attentional resources are allocated both to visual target and motor goals during goal-directed reaching movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baldauf D, Deubel H (2008a) Properties of attentional selection during the preparation of sequential saccades. Exp Brain Res 184:411–425

    Article  PubMed  Google Scholar 

  • Baldauf D, Deubel H (2008b) Visual attention during the preparation of bimanual movements. Vision Res 48:549–563

    Article  PubMed  Google Scholar 

  • Baldauf D, Deubel H (2009) Attentional selection of multiple goal positions before rapid hand movement sequences: an event-related potential study. J Cogn Neurosci 21:18–29

    Article  PubMed  Google Scholar 

  • Baldauf D, Wolf M, Deubel H (2006) Deployment of visual attention before sequences of goal-directed hand movements. Vision Res 46:4355–4374

    Article  PubMed  Google Scholar 

  • Basso MA, Wurtz RH (1998) Modulation of neuronal activity in superior colliculus by changes in target probability. J Neurosci 18:7519–7534

    PubMed  CAS  Google Scholar 

  • Beauchamp MS, Petit L, Ellmore TM, Ingeholm J, Haxby JV (2001) A parametric fMRI study of overt and covert shifts of visuospatial attention. Neuroimage 14:310–321

    Article  PubMed  CAS  Google Scholar 

  • Bedard P, Sanes JN (2011) Basal ganglia-dependent processes in recalling learned visual-motor adaptations. Exp Brain Res 209:385–393

    Article  PubMed  Google Scholar 

  • Bichot NP, Schall JD (1999) Saccade target selection in macaque during feature and conjunction visual search. Vis Neurosci 16:81–89

    Article  PubMed  CAS  Google Scholar 

  • Boussaoud D (2001) Attention versus intention in the primate premotor cortex. Neuroimage 14:S40–S45

    Article  PubMed  CAS  Google Scholar 

  • Boussaoud D, Wise SP (1993) Primate frontal cortex: neuronal activity following attentional versus intentional cues. Exp Brain Res 95:15–27

    Article  PubMed  CAS  Google Scholar 

  • Brainard DH (1997) The Psychophysics Toolbox. Spat Vis 10:433–436

    Article  PubMed  CAS  Google Scholar 

  • Bravo MJ, Nakayama K (1992) The role of attention in different visual-search tasks. Percept Psychophys 51:465–472

    Article  PubMed  CAS  Google Scholar 

  • Carello CD, Krauzlis RJ (2004) Manipulating intent: evidence for a causal role of the superior colliculus in target selection. Neuron 43:575–583

    Article  PubMed  CAS  Google Scholar 

  • Cavanaugh J, Wurtz RH (2004) Subcortical modulation of attention counters change blindness. J Neurosci 24:11236–11243

    Article  PubMed  CAS  Google Scholar 

  • Cisek P, Kalaska JF (2005) Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action. Neuron 45:801–814

    Article  PubMed  CAS  Google Scholar 

  • Cisek P, Kalaska JF (2010) Neural mechanisms for interacting with a world full of action choices. Annu Rev Neurosci 33:269–298

    Article  PubMed  CAS  Google Scholar 

  • Collins T, Schicke T, Roder B (2008) Action goal selection and motor planning can be dissociated by tool use. Cognition 109:363–371

    Article  PubMed  Google Scholar 

  • Collins T, Heed T, Roder B (2010) Visual target selection and motor planning define attentional enhancement at perceptual processing stages. Front Hum Neurosci 4:14

    Article  PubMed  Google Scholar 

  • Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA, Linenweber MR, Petersen SE, Raichle ME, Van Essen DC, Shulman GL (1998) A common network of functional areas for attention and eye movements. Neuron 21:761–773

    Article  PubMed  CAS  Google Scholar 

  • Cutrell EB, Marrocco RT (2002) Electrical microstimulation of primate posterior parietal cortex initiates orienting and alerting components of covert attention. Exp Brain Res 144:103–113

    Article  PubMed  CAS  Google Scholar 

  • Deubel H, Schneider WX (1996) Saccade target selection and object recognition: evidence for a common attentional mechanism. Vision Res 36:1827–1837

    Article  PubMed  CAS  Google Scholar 

  • Deubel H, Schneider WX (2003) Delayed saccades, but not delayed manual aiming movements, require visual attention shifts. Ann N Y Acad Sci 1004:289–296

    Article  PubMed  Google Scholar 

  • Gabrieli JD, Corkin S, Mickel SF, Growdon JH (1993) Intact acquisition and long-term retention of mirror-tracing skill in Alzheimer’s disease and in global amnesia. Behav Neurosci 107:899–910

    Article  PubMed  CAS  Google Scholar 

  • Gersch TM, Kowler E, Dosher B (2004) Dynamic allocation of visual attention during the execution of sequences of saccades. Vision Res 44:1469–1483

    Article  PubMed  Google Scholar 

  • Hegele M, Heuer H (2010) Implicit and explicit components of dual adaptation to visuomotor rotations. Conscious Cogn 19:906–917

    Article  PubMed  Google Scholar 

  • Heinze HJ, Mangun GR, Burchert W, Hinrichs H, Scholz M, Munte TF, Gos A, Scherg M, Johannes S, Hundeshagen H et al (1994) Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature 372:543–546

    Article  PubMed  CAS  Google Scholar 

  • Hoffman JE, Subramaniam B (1995) The role of visual attention in saccadic eye movements. Percept Psychophys 57:787–795

    Article  PubMed  CAS  Google Scholar 

  • Hopp JJ, Fuchs AF (2004) The characteristics and neuronal substrate of saccadic eye movement plasticity. Prog Neurobiol 72:27–53

    Article  PubMed  Google Scholar 

  • Horwitz GD, Newsome WT (1999) Separate signals for target selection and movement specification in the superior colliculus. Science 284:1158–1161

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Dobkins KR (2005) Attentional effects on contrast discrimination in humans: evidence for both contrast gain and response gain. Vision Res 45:1201–1212

    Article  PubMed  Google Scholar 

  • Indovina I, Sanes JN (2001) Combined visual attention and finger movement effects on human brain representations. Exp Brain Res 140:265–279

    Article  PubMed  CAS  Google Scholar 

  • Ingram HA, van Donkelaar P, Cole J, Vercher JL, Gauthier GM, Miall RC (2000) The role of proprioception and attention in a visuomotor adaptation task. Exp Brain Res 132:114–126

    Article  PubMed  CAS  Google Scholar 

  • Joseph JS, Chun MM, Nakayama K (1997) Attentional requirements in a ‘preattentive’ feature search task. Nature 387:805–807

    Article  PubMed  CAS  Google Scholar 

  • Kagerer FA, Contreras-Vidal JL, Stelmach GE (1997) Adaptation to gradual as compared with sudden visuo-motor distortions. Exp Brain Res 115:557–561

    Article  PubMed  CAS  Google Scholar 

  • Khan AZ, Heinen SJ, McPeek RM (2010) Attentional cueing at the saccade goal, not at the target location, facilitates saccades. J Neurosci 30:5481–5488

    Article  PubMed  CAS  Google Scholar 

  • Khan AZ, Song JH, McPeek RM (2011) The eye dominates in guiding attention during simultaneous eye and hand movements. J Vis 11:1–14

    Article  Google Scholar 

  • Kim B, Basso MA (2008) Saccade target selection in the superior colliculus: a signal detection theory approach. J Neurosci 28:2991–3007

    Article  PubMed  CAS  Google Scholar 

  • Klassen J, Tong C, Flanagan JR (2005) Learning and recall of incremental kinematic and dynamic sensorimotor transformations. Exp Brain Res 164:250–259

    Article  PubMed  Google Scholar 

  • Kowler E, Anderson E, Dosher B, Blaser E (1995) The role of attention in the programming of saccades. Vision Res 35:1897–1916

    Article  PubMed  CAS  Google Scholar 

  • Krakauer JW (2009) Motor learning and consolidation: the case of visuomotor rotation. Adv Exp Med Biol 629:405–421

    Article  PubMed  Google Scholar 

  • Krakauer JW, Ghez C, Ghilardi MF (2005) Adaptation to visuomotor transformations: consolidation, interference, and forgetting. J Neurosci 25:473–478

    Article  PubMed  CAS  Google Scholar 

  • Krauzlis R, Dill N (2002) Neural correlates of target choice for pursuit and saccades in the primate superior colliculus. Neuron 35:355–363

    Article  PubMed  CAS  Google Scholar 

  • Lebedev MA, Wise SP (2001) Tuning for the orientation of spatial attention in dorsal premotor cortex. Eur J Neurosci 13:1002–1008

    Article  PubMed  CAS  Google Scholar 

  • Lovejoy LP, Krauzlis RJ (2010) Inactivation of primate superior colliculus impairs covert selection of signals for perceptual judgments. Nat Neurosci 13:261–266

    Article  PubMed  CAS  Google Scholar 

  • Luck SJ, Hillyard SA (1995) The role of attention in feature detection and conjunction discrimination: an electrophysiological analysis. Int J Neurosci 80:281–297

    Article  PubMed  CAS  Google Scholar 

  • Malfait N, Ostry DJ (2004) Is interlimb transfer of force-field adaptation a cognitive response to the sudden introduction of load? J Neurosci 24:8084–8089

    Article  PubMed  CAS  Google Scholar 

  • Maljkovic V, Nakayama K (1994) Priming of pop-out: I. Role of features. Mem Cognit 22:657–672

    Article  PubMed  CAS  Google Scholar 

  • Mangun GR, Hillyard SA (1988) Spatial gradients of visual attention: behavioral and electrophysiological evidence. Electroencephalogr Clin Neurophysiol 70:417–428

    Article  PubMed  CAS  Google Scholar 

  • Mangun GR, Hillyard SA (1990) Allocation of visual attention to spatial locations: tradeoff functions for event-related brain potentials and detection performance. Percept Psychophys 47:532–550

    Article  PubMed  CAS  Google Scholar 

  • Mazzoni P, Krakauer JW (2006) An implicit plan overrides an explicit strategy during visuomotor adaptation. J Neurosci 26:3642–3645

    Article  PubMed  CAS  Google Scholar 

  • McAdams CJ, Maunsell JH (1999) Effects of attention on the reliability of individual neurons in monkey visual cortex. Neuron 23:765–773

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin SC, Webster RG (1967) Changes in straight-ahead eye position during adaptation to wedge prisms. Percept Psychophys 2:37–44

    Article  Google Scholar 

  • McPeek RM, Keller EL (2004) Deficits in saccade target selection after inactivation of superior colliculus. Nat Neurosci 7:757–763

    Article  PubMed  CAS  Google Scholar 

  • McSorley E, Findlay JM (2003) Saccade target selection in visual search: accuracy improves when more distractors are present. J Vis 3:877–892

    Article  PubMed  Google Scholar 

  • Moore T, Fallah M (2001) Control of eye movements and spatial attention. Proc Natl Acad Sci USA 98:1273–1276

    Article  PubMed  CAS  Google Scholar 

  • Muller JR, Philiastides MG, Newsome WT (2005) Microstimulation of the superior colliculus focuses attention without moving the eyes. Proc Natl Acad Sci USA 102:524–529

    Article  PubMed  Google Scholar 

  • Neggers SF, Bekkering H (2000) Ocular gaze is anchored to the target of an ongoing pointing movement. J Neurophysiol 83:639–651

    PubMed  CAS  Google Scholar 

  • Nobre AC, Gitelman DR, Dias EC, Mesulam MM (2000) Covert visual spatial orienting and saccades: overlapping neural systems. Neuroimage 11:210–216

    Article  PubMed  CAS  Google Scholar 

  • Nummela SU, Krauzlis RJ (2010) Inactivation of primate superior colliculus biases target choice for smooth pursuit, saccades, and button press responses. J Neurophysiol 104:1538–1548

    Article  PubMed  Google Scholar 

  • Palmer J, Verghese P, Pavel M (2000) The psychophysics of visual search. Vision Res 40:1227–1268

    Article  PubMed  CAS  Google Scholar 

  • Pelli DG (1997) The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat Vis 10:437–442

    Article  PubMed  CAS  Google Scholar 

  • Pesaran B, Nelson MJ, Andersen RA (2008) Free choice activates a decision circuit between frontal and parietal cortex. Nature 453:406–409

    Article  PubMed  CAS  Google Scholar 

  • Raymond JE, Shapiro KL, Arnell KM (1992) Temporary suppression of visual processing in an RSVP task: an attentional blink? J Exp Psychol Hum Percept Perform 18:849–860

    Article  PubMed  CAS  Google Scholar 

  • Reynolds JH, Heeger DJ (2009) The normalization model of attention. Neuron 61:168–185

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Riggio L, Sheliga BM (1994) Attention and performance XV: conscious and nonconscious information processing—Umilta, C, Moscovitch, M. J Psychophysiol 11:232–265

    Google Scholar 

  • Shadmehr R, Wise SP (2005) The computational neurobiology of reaching and pointing: a foundation for motor learning. MIT Press, Cambridge, MA

    Google Scholar 

  • Shadmehr R, Brandt J, Corkin S (1998) Time-dependent motor memory processes in amnesic subjects. J Neurophysiol 80:1590–1597

    PubMed  CAS  Google Scholar 

  • Sheliga BM, Riggio L, Rizzolatti G (1995) Spatial attention and eye movements. Exp Brain Res 105:261–275

    Article  PubMed  CAS  Google Scholar 

  • Snyder LH, Batista AP, Andersen RA (2000) Intention-related activity in the posterior parietal cortex: a review. Vision Res 40:1433–1441

    Article  PubMed  CAS  Google Scholar 

  • Somers DC, Dale AM, Seiffert AE, Tootell RBH (1999) Functional MRI reveals spatially specific attentional modulation in human primary visual cortex. Proc Natl Acad Sci USA 96:1663–1668

    Article  PubMed  CAS  Google Scholar 

  • Song J-H, McPeek RM (2009) Eye-hand coordination during target selection in a pop-out visual search. J Neurophysiol 102:2681–2692

    Article  PubMed  Google Scholar 

  • Song J-H, McPeek RM (2010) Roles of narrow- and broad-spiking dorsal premotor area neurons in reach target selection and movement production. J Neurophysiol 103:2124–2138

    Article  PubMed  Google Scholar 

  • Song J-H, Nakayama K (2006) Role of focal attention on latencies and trajectories of visually guided manual pointing. J Vis 6:982–995

    Article  PubMed  Google Scholar 

  • Song J-H, Nakayama K (2007) Fixation offset facilitates saccades and manual reaching for single but not multiple target displays. Exp Brain Res 177:223–232

    Article  PubMed  Google Scholar 

  • Song J-H, Takahashi N, McPeek RM (2008) Target selection for visually guided reaching in macaque. J Neurophysiol 99:14–24

    Article  PubMed  Google Scholar 

  • Song J-H, Rafal RD, McPeek RM (2011) Deficits in reach target selection during inactivation of the midbrain superior colliculus. Proc Natl Acad Sci USA 108:E1433–E1440

    Article  PubMed  CAS  Google Scholar 

  • Tranel D, Damasio AR, Damasio H, Brandt JP (1994) Sensorimotor skill learning in amnesia: additional evidence for the neural basis of nondeclarative memory. Learn Mem 1:165–179

    PubMed  CAS  Google Scholar 

  • Treue S, Maunsell JH (1999) Effects of attention on the processing of motion in macaque middle temporal and medial superior temporal visual cortical areas. J Neurosci 19:7591–7602

    PubMed  CAS  Google Scholar 

  • Westendorff S, Klaes C, Gail A (2010) The cortical timeline for deciding on reach motor goals. J Neurosci 30:5426–5436

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Brown University start-up fund and Salomon faculty research awards to J.H.S. We thank Drs. J. Moher and L. Welch for helpful discussion, and K. Kelly, J. Sit, M. Dixon, and M. Lewis for data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo-Hyun Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, JH., Bédard, P. Allocation of attention for dissociated visual and motor goals. Exp Brain Res 226, 209–219 (2013). https://doi.org/10.1007/s00221-013-3426-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-013-3426-3

Keywords

Navigation