Skip to main content
Log in

Pure Partition Functions of Multiple SLEs

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Multiple Schramm–Loewner Evolutions (SLE) are conformally invariant random processes of several curves, whose construction by growth processes relies on partition functions—Möbius covariant solutions to a system of second order partial differential equations. In this article, we use a quantum group technique to construct a distinguished basis of solutions, which conjecturally correspond to the extremal points of the convex set of probability measures of multiple SLEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauer, M., Bernard, D., Houdayer, J.: Dipolar stochastic Loewner evolutions. J. Stat. Mech. P03001 (2005)

  2. Bauer M., Bernard D., Kytölä K.: Multiple Schramm–Loewner evolutions and statistical mechanics martingales. J. Stat. Phys. 120(5–6), 1125–1163 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Belavin A.A., Polyakov A.M., Zamolodchikov A.B.: Infinite conformal symmetry of critical fluctuations in two dimensions. J. Stat. Phys. 34, 763–774 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Camia F., Newman C.M.: Critical percolation exploration path and SLE6: a proof of convergence. Probab. Theory Relat. Fields 139(3–4), 473–519 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cantini L., Sportiello A.: Proof of the Razumov–Stroganov conjecture. J. Combin. Theory Ser. A 118, 1549–1574 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cardy, J.: Conformal Invariance and Statistical Mechanics. In: Brézin, E., Zinn-Justin, J. (eds.) Fields, Strings and Critical Phenomena (Les Houches 1988). Elsevier Science Publishers BV, Amsterdam (1988)

  7. Cardy J.: Critical percolation in finite geometries. J. Phys. A 25, L201–L206 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Chelkak D., Duminil-Copin H., Hongler C., Kemppainen A., Smirnov S.: Convergence of Ising interfaces to SLE. C. R. Acad. Sci. Paris Ser. I 352(2), 157–161 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chelkak D., Hongler C., Izyurov K.: Conformal invariance of spin correlations in the planar Ising model. Ann. Math. 181(3), 1087–1138 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chelkak D., Izyurov K.: Holomorphic spinor observables in the critical Ising model. Commun. Math. Phys. 322, 303–332 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Chelkak D., Smirnov S.: Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math. 189, 515–580 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Dotsenko V.S., Fateev V.A.: Conformal algebra and multipoint correlation functions in 2D statistical models. Nucl. Phys. B 240, 312 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  13. Dubédat J.: Euler integrals for commuting SLEs. J. Stat. Phys. 123(6), 1183–1218 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Dubédat J.: Commutation relations for SLE. Commun. Pure Appl. Math. 60(12), 1792–1847 (2007)

    Article  MATH  Google Scholar 

  15. Dubédat J.: SLE and the free field: partition functions and couplings. J. Am. Math. Soc. 22, 995–1054 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Eynard B., Orantin N.: Mixed correlation functions in the 2-matrix model, and the Bethe ansatz. J. High Energy Phys. 0508, 028 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  17. Flores S.M., Kleban P.: A solution space for a system of null-state partial differential equations, Part I. Commun. Math. Phys. 333(1), 389–434 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Flores S.M., Kleban P.: A solution space for a system of null-state partial differential equations, Part II. Commun. Math. Phys. 333(1), 435–481 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Flores S.M., Kleban P.: A solution space for a system of null-state partial differential equations, Part III. Commun. Math. Phys. 333(2), 597–667 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Flores S.M., Kleban P.: A solution space for a system of null-state partial differential equations, Part IV. Commun. Math. Phys. 333(2), 669–715 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Flores, S.M., Simmons, J.J.H., Kleban, P.: Multiple-SLE connectivity weights for rectangles, hexagons, and octagons (2015). Preprint. arXiv:1505.07756

  22. Flores S.M., Ziff R.M., Simmons J.J.H.: Percolation crossing probabilities in hexagons: a numerical study. J. Phys. A: Math. Theor. 48, 025001 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Graham, K.: On multiple Schramm–Loewner evolutions. J. Stat. Mech.: Theory Exp. P03008 (2007)

  24. Grimmett G.: Percolation. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  25. Hongler, C.: Conformal invariance of Ising model correlations. Ph.D. thesis, Université de Genève (2010)

  26. Hongler C., Kytölä K.: Ising interfaces and free boundary conditions. J. Am. Math. Soc. 26, 1107–1189 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hongler C., Smirnov S.: The energy density in the 2d Ising model. Acta Math. 211, 191–225 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Izyurov, K.: Holomorphic spinor observables and interfaces in the critical Ising model. Ph.D. thesis, Université de Genève (2011)

  29. Izyurov, K.: Critical Ising interfaces in multiply-connected domains. Probab. Theory Relat. Fields (2015). doi:10.1007/s00440-015-0685-x

  30. Izyurov K.: Smirnov’s observable for free boundary conditions, interfaces and crossing probabilities. Commun. Math. Phys. 337(1), 225–252 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Izyurov K., Kytölä K.: Hadamard’s formula and couplings of SLEs with free field. Probab. Theory Relat. Fields 155, 35–69 (2013)

    Article  MATH  Google Scholar 

  32. Jokela, N., Järvinen, M., Kytölä, K.: SLE boundary visits. Annales Henri Poincaré 17(6), 1263–1330 (2016)

  33. Kenyon R.: Conformal invariance of domino tiling. Ann. Probab. 28, 759–795 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kenyon R.W., Wilson D.B.: Boundary partitions in trees and dimers. Trans. Am. Math. Soc. 363, 1325–1364 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kozdron, M.J., Lawler, G.F.: The configurational measure on mutually avoiding SLE paths. In: Universality and renormalization: from stochastic evolution to renormalization of quantum fields, fields institute communications. American Mathematical Society, Providence (2007)

  36. Kytölä K.: Virasoro module structure of local martingales of SLE variants. Rev. Math. Phys. 19(5), 455–509 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kytölä, K., Peltola, E.: Conformally covariant boundary correlation functions with a quantum group (2014). Preprint in arXiv:1408.1384

  38. Lawler G.F., Schramm O., Werner W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32(1B), 939–995 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. McCoy B.M., Wu T.T.: The Two-Dimensional Ising Model. Harvard University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  40. Miller J., Sheffield S.: Imaginary geometry I: interacting SLEs. Probab. Theory. Relat. Fields 164, 553–705 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Miller, J., Sheffield, S.: Imaginary geometry III: reversibility of \({SLE_{\kappa}}\) for \({\kappa \in (4,8)}\). Ann. Math. (2012) (to appear). Preprint. arXiv:1201.1498

  42. Razumov A.V., Stroganov Y.G.: Combinatorial nature of ground state vector of O(1) loop model. Theor. Math. Phys. 138, 333–337 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. Rohde S., Schramm O.: Basic properties of SLE. Ann. Math. 161(2), 883–924 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. Schramm O.: Scaling limits of loop-erased random walks and uniform spanning trees. Isr. J. Math. 118, 221–288 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  45. Schramm O., Sheffield S.: Contour lines of the two-dimensional discrete Gaussian free field. Acta Math. 202, 21–137 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Schramm O., Sheffield S.: A contour line of the continuum Gaussian free field. Probab. Theory Relat. Fields 157, 47–80 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Sheffield S.: Gaussian free field for mathematicians. Probab. Theory Relat. Fields 139, 521–541 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Simmons J.J.H.: Logarithmic operator intervals in the boundary theory of critical percolation. J. Phys. A: Math. Theor. 46, 494015 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Smirnov, S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris 333, 239–244 (2001). See also arXiv:0909.4499

  50. Smirnov, S.: Towards conformal invariance of 2d lattice models. In: Proceedings of the International Congress of Mathematicians, pp. 1421–1451. Madrid, Spain (2006)

  51. Werner, W.: Topics on the two-dimensional Gaussian free field. Lecture notes, http://people.math.ethz.ch/~wewerner/GFFln (2014)

  52. Zhan, D.: Random Loewner Chains in Riemann Surfaces. Ph.D. thesis, California Institute of Technology (2004)

  53. Zhan D.: The scaling limits of planar LERW in finitely connected domains. Ann. Probab. 36(2), 467–529 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhan D.: Reversibility of chordal SLE. Ann. Probab. 36, 1472–1494 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalle Kytölä.

Additional information

Communicated by A. Borodin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kytölä, K., Peltola, E. Pure Partition Functions of Multiple SLEs. Commun. Math. Phys. 346, 237–292 (2016). https://doi.org/10.1007/s00220-016-2655-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2655-2

Navigation