Skip to main content
Log in

A Solution Space for a System of Null-State Partial Differential Equations: Part 4

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This article is the last of four that completely and rigorously characterize a solution space \({{\mathcal{S}}_N}\) for a homogeneous system of 2N + 3 linear partial differential equations in 2N variables that arises in conformal field theory (CFT) and multiple Schramm-Löwner evolution (SLE\({_\kappa}\)). The system comprises 2N null-state equations and three conformal Ward identities that govern CFT correlation functions of 2N one-leg boundary operators. In the first two articles (Flores and Kleban in Commun Math Phys, 2012; Flores and Kleban, in Commun Math Phys, 2014), we use methods of analysis and linear algebra to prove that dim \({{\mathcal{S}}_N \leq C_N}\) , with C N the Nth Catalan number. Using these results in the third article (Flores and Kleban, in Commun Math Phys, 2013), we prove that dim \({{\mathcal{S}}_N=C_N}\) and \({{\mathcal{S}}_N}\) is spanned by (real-valued) solutions constructed with the Coulomb gas (contour integral) formalism of CFT.

In this article, we use these results to prove some facts concerning the solution space \({{\mathcal{S}}_N}\) . First, we show that each of its elements equals a sum of at most two distinct Frobenius series in powers of the difference between two adjacent points (unless \({8/\kappa}\) is odd, in which case a logarithmic term may appear). This establishes an important element in the operator product expansion for one-leg boundary operators, assumed in CFT. We also identify particular elements of \({{\mathcal{S}}_N}\) , which we call connectivity weights, and exploit their special properties to conjecture a formula for the probability that the curves of a multiple-SLE\({_\kappa}\) process join in a particular connectivity. This leads to new formulas for crossing probabilities of critical lattice models inside polygons with a free/fixed side-alternating boundary condition, which we derive in Flores et al. (Partition functions and crossing probabilities for critical systems inside polygons, in preparation). Finally, we propose a reason for why the exceptional speeds [certain \({\kappa}\) values that appeared in the analysis of the Coulomb gas solutions in Flores and Kleban (Commun Math Phys, 2013)] and the minimal models of CFT are connected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flores, S.M., Kleban, P.: A solution space for a system of null-state partial differential equations I. Commun. Math. Phys. Preprint: arXiv:1212.2301 (2012, to appear)

  2. Flores, S.M., Kleban, P.: A solution space for a system of null-state partial differential equations II. Commun. Math. Phys. Preprint: arXiv:1404.0035 (2014, to appear)

  3. Flores, S.M., Kleban, P.: A solution space for a system of null-state partial differential equations III. Commun. Math. Phys. Preprint:arXiv:1303.7182 (2013, to appear)

  4. Belavin A.A., Polyakov A.M., Zamolodchikov A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241, 333–380 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Francesco P., Mathieu R., Sénéchal D.: Conformal Field Theory. Springer, New York (1997)

    Book  MATH  Google Scholar 

  6. Henkel M.: Conformal Invariance and Critical Phenomena. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  7. Bauer M., Bernard D., Kytölä K.: Multiple Schramm-Löwner evolutions and statistical mechanics martingales. J. Stat. Phys. 120, 1125 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Dubédat J.: Commutation relations for SLE. Comm. Pure Appl. Math. 60, 1792–1847 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Graham, K.: On multiple Schramm-Löwner evolutions. J. Stat. Mech. P03008 (2007)

  10. Kozdron M.J., Lawler G.: The configurational measure on mutually avoiding SLE paths. Fields Inst. Commun. 50, 199–224 (2007)

  11. Sakai K.: Multiple Schramm-Löwner evolutions for conformal field theories with Lie algebra symmetries. Nucl. Phys. B 867, 429–447 (2013)

    Article  ADS  MATH  Google Scholar 

  12. Bauer M., Bernard D.: Conformal field theories of stochastic Löwner evolutions. Comm. Math. Phys. 239, 493–521 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Dotsenko V.S.: Critical behavior and associated conformal algebra of the Z3 Potts model. Nucl. Phys. B 235, 54–74 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  14. Gruzberg I.A.: Stochastic geometry of critical curves, Schramm-Löwner evolutions, and conformal field theory. J. Phys. A 39, 12601–12656 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Rushkin I., Bettelheim E., Gruzberg I.A., Wiegmann P.: Critical curves in conformally invariant statistical systems. J. Phys. A 40, 2165–2195 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Cardy J.: Critical percolation in finite geometries. J. Phys. A Math. Gen. 25, L201–L206 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Cardy J.: Conformal invariance and surface critical behavior. Nucl. Phys. B 240, 514–532 (1984)

    Article  ADS  Google Scholar 

  18. Grimmett G.: Percolation. Springer, New York (1989)

    MATH  Google Scholar 

  19. Baxter R.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982)

    MATH  Google Scholar 

  20. Wu F.Y.: The Potts model. Rev. Mod. Phys. 54, 235–268 (1982)

    Article  ADS  Google Scholar 

  21. Fortuin C.M., Kasteleyn P.W.: On the random cluster model I. Introduction and relation to other models. Physica D 57, 536–564 (1972)

    MathSciNet  Google Scholar 

  22. Stanley H.E.: Dependence of critical properties on dimensionality of spins. Phys. Rev. Lett. 20, 589–592 (1968)

    Article  ADS  Google Scholar 

  23. Ziff R.M., Cummings P.T., Stell G.: Generation of percolation cluster perimeters by a random walk. J. Phys. A Math. Gen. 17, 3009–3017 (1984)

    Article  ADS  Google Scholar 

  24. Lawler G.: A self-avoiding walk. Duke Math. J. 47, 655–694 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  25. Schramm O., Sheffield S.: The harmonic explorer and its convergence to SLE4. Ann. Probab. 33, 2127–2148 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Weinrib A., Trugman S.A.: A new kinetic walk and percolation perimeters. Phys. Rev. B 31, 2993–2997 (1985)

    Article  ADS  Google Scholar 

  27. Madra G., Slade G.: The Self-Avoiding Walk. Birkhäuser, Boston (1996)

    Book  Google Scholar 

  28. Dotsenko V.S., Fateev V.A.: Conformal algebra and multipoint correlation functions in 2D statistical models. Nucl. Phys. B 240, 312–348 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  29. Dotsenko, V.S., Fateev, V.A.: Four-point correlation functions and the operator algebra in 2D conformal invariant theories with central charge \({c \leq 1}\) . Nucl. Phys. B 251, 691–673 (1985)

  30. Smirnov S.: Towards conformal invariance of 2D lattice models. Proc. Int. Congr. Math. 2, 1421–1451 (2006)

    Google Scholar 

  31. Duminil-Copin, H., Smirnov, S.: Conformal invariance of lattice models. In: Ellwood, D., Newman, C., Sidoravicius, V., Werner, W. (eds). Probability and Statistical Physics in Two and More Dimensions, Clay Mathematics Proceedings, vol. 15, pp. 213–276 (2012)

  32. Dubédat J.: Euler integrals for commuting SLEs. J. Stat. Phys. 123, 1183–1218 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Francesco P., Golinelli O., Guitter E.: Meanders and the Temperley-Lieb algebra. Comm. Math. Phys. 186, 1–59 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Francesco P., Guitter E.: Geometrically constrained statistical systems on regular and random lattices: from foldings to meanders. Phys. Reports 415, 1–88 (2005)

    Article  ADS  Google Scholar 

  35. Francesco P.: Meander Determinants. Comm. Math. Phys. 191, 543–583 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Di Francesco, P.: Truncated meanders. In: Jing, N. Misra, K. (eds). Recent Developments in Quantum Affine Algebras and Related Topics, pp. 135–161. American Mathematical Society (1999)

  37. Simmons J.J.H.: Logarithmic operator intervals in the boundary theory of critical percolation. J. Phys. A Math. Theor. 46, 494015 (2013)

    Article  MathSciNet  Google Scholar 

  38. Flores, S.M., Simmons, J.J.H., Kleban, P.: Multiple-SLE\({_\kappa }\) connectivity weights for rectangles, hexagons, and octagons (In preparation, 2014)

  39. Flores, S.M., Simmons, J.J.H., Kleban, P., Ziff R.M.: Partition functions and crossing probabilities for critical systems inside polygons (In preparation, 2014)

  40. Bender C.M., Orszag S.A.: Advanced Mathematical Methods for Scientists and Engineers, Asymptotic Methods and Perturbation Theory. Springer, New York (1999)

    Google Scholar 

  41. Gurarie V.: Logarithmic operators in conformal field theory. Nucl. Phys. B 410, 535–549 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. Gurarie V.: Logarithmic operators and logarithmic conformal field theories. J. Phys. A Math. Theor. 46, 494003 (2013)

    Article  MathSciNet  Google Scholar 

  43. Mathieu P., Ridout D.: From percolation to logarithmic conformal field theory. Phys. Lett. B 657, 120–129 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  44. Runkel, I., Gaberdiel, M.R., Wood, S.: Logarithmic bulk and boundary conformal field theory and the full centre construction. In: Bai, C., Fuchs, J., Huang, Y.Z., Kong, L., Runkel, I., Schweigert, C. (eds.) Conformal Field Theories and Tensor Categories, pp. 93–168 (2014)

  45. Vasseur, R., Jacobsen, J.L., Saleur, H.: Logarithmic observables in critical percolation. J. Stat. Mech. L07001 (2012)

  46. Bauer M., Bernard D.: 2D growth processes: SLE and Löwner chains. Phys. Rept. 432, 115–221 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  47. Jokela, N., Järvinen, M., Kytölä, K.: SLE boundary visits. Preprint: arXiv:1311.2297 (2013)

  48. Cardy J.: Boundary conditions, fusion rules, and the Verlinde formula. Nucl. Phys. B 324, 581–596 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  49. Cardy J.: Effect of boundary conditions on the operator content of two-dimensional conformally invariant theories. Nucl. Phys. B 275, 200–218 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  50. Sauler H., Bauer M.: On some relations between local height probabilities and conformal invariance. Nucl. Phys. B 320, 591–624 (1989)

    Article  ADS  Google Scholar 

  51. Gamsa, A., Cardy, J.: Schramm–Loewner evolution in the three-state Potts model—a numerical study. J. Stat. Mech. P08020 (2007)

  52. Bauer M., Francesco P.: Covariant differential equations and singular vectors in Virasoro representations. Nucl. Phys. B 362, 515–562 (1991)

    Article  ADS  MATH  Google Scholar 

  53. Lawler G., Schramm O., Werner W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32, 939–995 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  54. Lawler, G., Schramm, O., Werner, W.: On the scaling limit of planar self-avoiding walk. In: Lapidus, M.L., Frankenhuysen, M.V. (eds.) Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot, Part 2. American Mathematical Society (2004)

  55. Lawler G., Schramm O., Werner W.: Values of Brownian intersection exponents I: Half-plane exponents. Acta Math. 187, 237–273 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  56. Smirnov S.: Critical percolation in the plane. C. R. Acad. Sci. Paris Sr. I Math. 333, 239–244 (2001)

    Article  ADS  MATH  Google Scholar 

  57. Smirnov S.: Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. Math. 172, 1435–1467 (2010)

    Article  MATH  Google Scholar 

  58. Benoit L., Saint-Aubin Y.: Degenerate conformal field theories and explicit expressions for some null vectors. Phys. Lett. B 215, 517–522 (1988)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  59. Kytölä, K., Peltola, E.: Pure geometries of multiple SLEs (In preparation, 2014)

  60. Kytölä, K., Peltola, E.: Conformally covariant boundary correlation functions with a quantum group. Preprint: arXiv:1408.1384 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Flores.

Additional information

Communicated by M. Salmhofer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores, S.M., Kleban, P. A Solution Space for a System of Null-State Partial Differential Equations: Part 4. Commun. Math. Phys. 333, 669–715 (2015). https://doi.org/10.1007/s00220-014-2180-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2180-0

Keywords

Navigation