Skip to main content
Log in

Strong Converse Exponents for a Quantum Channel Discrimination Problem and Quantum-Feedback-Assisted Communication

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper studies the difficulty of discriminating between an arbitrary quantum channel and a “replacer" channel that discards its input and replaces it with a fixed state. The results obtained here generalize those known in the theory of quantum hypothesis testing for binary state discrimination. We show that, in this particular setting, the most general adaptive discrimination strategies provide no asymptotic advantage over non-adaptive tensor-power strategies. This conclusion follows by proving a quantum Stein’s lemma for this channel discrimination setting, showing that a constant bound on the Type I error leads to the Type II error decreasing to zero exponentially quickly at a rate determined by the maximum relative entropy registered between the channels. The strong converse part of the lemma states that any attempt to make the Type II error decay to zero at a rate faster than the channel relative entropy implies that the Type I error necessarily converges to one. We then refine this latter result by identifying the optimal strong converse exponent for this task. As a consequence of these results, we can establish a strong converse theorem for the quantum-feedback-assisted capacity of a channel, sharpening a result due to Bowen. Furthermore, our channel discrimination result demonstrates the asymptotic optimality of a non-adaptive tensor-power strategy in the setting of quantum illumination, as was used in prior work on the topic. The sandwiched Rényi relative entropy is a key tool in our analysis. Finally, by combining our results with recent results of Hayashi and Tomamichel, we find a novel operational interpretation of the mutual information of a quantum channel \({\mathcal{N}}\) as the optimal Type II error exponent when discriminating between a large number of independent instances of \({\mathcal{N}}\) and an arbitrary “worst-case” replacer channel chosen from the set of all replacer channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ando T.: Convexity of certain maps on positive definite matrices and applications to Hadamard products. Linear Algebra Appl. 26, 203–241 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Audenaert K.M.R., Nussbaum M., Szkola A., Verstraete F.: Asymptotic error rates in quantum hypothesis testing. Commun. Math. Phys. 279, 251–283 (2008) arXiv:0708.4282

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Augustin, U.: Noisy channels. Habilitation thesis, Universitat Erlangen-Nurnberg, West Germany (1978)

  4. Beigi S.: Sandwiched Rényi divergence satisfies data processing inequality. J.Math. Phys. 54(12), 122202 (2013) arXiv:1306.5920

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bennett C.H., Devetak I., Harrow A.W., Shor P.W., Winter A.: Quantum reverse Shannon theorem and resource tradeoffs for simulating quantum channels. IEEE Trans. Inf. Theory 60(5), 2926–2959 (2014) arXiv:0912.5537

    Article  MathSciNet  Google Scholar 

  6. Bennett C.H., Shor P.W., Smolin J.A., Thapliyal A.V.: Entanglement-assisted classical capacity of noisy quantum channels. Phys. Rev. Lett. 83(15), 3081–3084 (1999) arXiv:quant-ph/9904023

    Article  ADS  Google Scholar 

  7. Bennett C.H., Shor P.W., Smolin J.A., Thapliyal A.V.: Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem. IEEE Trans. Inf. Theory 48, 2637–2655 (2002) arXiv:quant-ph/0106052

    Article  MathSciNet  MATH  Google Scholar 

  8. Blahut R.: Hypothesis testing and information theory. IEEE Trans. Inf. Theory 20(4), 405–417 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bowen G.: Quantum feedback channels. IEEE Trans. Inf. Theory 50, 2429–2433 (2004) arXiv:quant-ph/0209076

    Article  MathSciNet  MATH  Google Scholar 

  10. Burnashev M.V., Holevo A.S.: On reliability function of quantum communication channel. Probl. Inf. Transm. 34, 97–107 (1998) arXiv:quant-ph/9703013

    MathSciNet  MATH  Google Scholar 

  11. Carlen E.A., Lieb E.H.: A Minkowski type trace inequality and strong subadditivity of quantum entropy II: convexity and concavity. Lett. Math. Phys. 83(2), 107–126 (2008) arXiv:0710.4167

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Csiszar I., Korner J.: Feedback does not affect the reliability function of a DMC at rates above capacity. IEEE Trans. Inf. Theory 28(1), 92–93 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Devetak I., King C., Junge M., Ruskai M.B.: Multiplicativity of completely bounded p-norms implies a new additivity result. Commun. Math. Phys. 266(1), 37–63 (2006) arXiv:quant-ph/0506196

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Duan R., Feng Y., Ying M.: Perfect distinguishability of quantum operations. Phys. Rev. Lett. 103(21), 210501 (2009) arXiv:0908.0119

    Article  ADS  MathSciNet  Google Scholar 

  15. Dueck G., Korner J.: Reliability function of a discrete memoryless channel at rates above capacity. IEEE Trans. Inf. Theory 25(1), 82–85 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fan K.: Minimax theorems. Proc. Natl. Acad. Sci. USA 39(1), 42–47 (1953)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Frank R.L., Lieb E.H.: Monotonicity of a relative Rényi entropy. J. Math. Phys. 54(12), 122201 (2013) arXiv:1306.5358

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Gupta M., Wilde M.M.: Multiplicativity of completely bounded p-norms implies a strong converse for entanglement-assisted capacity. Commun. Math. Phys. 334(2), 867–887 (2015) arXiv:1310.7028

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Harrow A.W., Hassidim A., Leung D., Watrous J.: versus non-adaptive strategies for quantum channel discrimination. Phys. Rev. A 81(3), 032339 (2010) arXiv:0909.0256

    Article  ADS  Google Scholar 

  20. Hayashi M.: Quantum Information Theory: An Introduction. Springer, New York (2006)

    MATH  Google Scholar 

  21. Hayashi M.: Error exponent in asymmetric quantum hypothesis testing and its application to classical-quantum channel coding. Phys. Rev. A 76(6), 062301 (2007) arXiv:quant-ph/0611013

    Article  ADS  Google Scholar 

  22. Hayashi M.: Discrimination of two channels by adaptive methods and its application to quantum system. IEEE Trans. Inf. Theory 55(8), 3807–3820 (2009) arXiv:0804.0686

    Article  MathSciNet  Google Scholar 

  23. Hayashi M., Nagaoka H.: General formulas for capacity of classical-quantum channels. IEEE Trans. Inf. Theory 49(7), 1753–1768 (2003) arXiv:quant-ph/0206186

    Article  MathSciNet  MATH  Google Scholar 

  24. Hayashi, M., Tomamichel, M.: Correlation detection and an operational interpretation of the Rényi mutual information. In: 2015 IEEE International Symposium on Information Theorey, Hong Kong, pp. 1447–1451 (2015). arXiv:1408:6894

  25. Hiai F., Petz D.: The proper formula for relative entropy and its asymptotics in quantum probability. Commun. Math. Phys. 143(1), 99–114 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Holevo A.S.: The capacity of the quantum channel with general signal states. IEEE Trans. Inf. Theory 44(1), 269–273 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Holevo A.S.: Reliability function of general classical-quantum channel. IEEE Trans. Inf. Theory 46(6), 2256–2261 (2000) arXiv:quant-ph/9907087

    Article  MathSciNet  MATH  Google Scholar 

  28. Holevo A.S.: On entanglement assisted classical capacity. J. Math. Phys. 43(9), 4326–4333 (2002) arXiv:quant-ph/0106075

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Jenčová A.: A relation between completely bounded norms and conjugate channels. Commun. Math. Phys. 266(1), 65–70 (2006) arXiv:quant-ph/0601071

    Article  ADS  MathSciNet  Google Scholar 

  30. Kneser H.: Sur un téorème fondamental de la théorie des jeux. C. R. Acad. Sci. Paris 234, 2418–2420 (1952)

    MathSciNet  MATH  Google Scholar 

  31. Koenig R., Wehner S.: A strong converse for classical channel coding using entangled inputs. Phys. Rev. Lett. 103(7), 070504 (2009) arXiv:0903.2838

    Article  ADS  Google Scholar 

  32. Li K.: Second order asymptotics for quantum hypothesis testing. Ann. Stat. 42(1), 171–189 (2014) arXiv:1208.1400

    Article  MathSciNet  MATH  Google Scholar 

  33. Lieb E.H.: Convex trace functions and the Wigner–Yanase–Dyson conjecture. Adv. Math. 11, 267–288 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lloyd S.: Enhanced sensitivity of photodetection via quantum illumination. Science 321(5895), 1463–1465 (2008) arXiv:0803.2022

    Article  ADS  Google Scholar 

  35. Mosonyi, M., Hiai, F.: On the quantum Rényi relative entropies and related capacity formulas. IEEE Trans. Inf. Theory 57(4), 2474–2487 (2011)

  36. Mosonyi M., Ogawa T.: Quantum hypothesis testing and the operational interpretation of the quantum Rényi relative entropies. Commun. Math. Phys. 334(3), 1617–1648 (2015) arXiv:1309.3228

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Müller-Lennert M., Dupuis F., Szehr O., Fehr S., Tomamichel M.: On quantum Rényi entropies: a new generalization and some properties. J. Math. Phys. 54(12), 122203 (2013) arXiv:1306.3142

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Nagaoka, H.: Strong converse theorems in quantum information theory. In: Proceedings of ERATO Workshop on Quantum Information Science, p.33 (2001). [Also appeared in Asymptotic Theory of Quantum Statistical Inference, ed. M. Hayashi, World Scientific, singapore (2005)]

  39. Nagaoka, H.: The converse part of the theorem for quantum Hoeffding bound (2006). arXiv:quant-ph/0611289

  40. Ogawa T., Hayashi M.: On error exponents in quantum hypothesis testing. IEEE Trans. Inf. Theory 50(6), 1368–1372 (2004) arXiv:quant-ph/0206151

    Article  MathSciNet  MATH  Google Scholar 

  41. Ogawa T., Nagaoka H.: Strong converse and Stein’s lemma in quantum hypothesis testing. IEEE Trans. Inf. Theory 46(7), 2428–2433 (2000) arXiv:quant-ph/9906090

    Article  MathSciNet  MATH  Google Scholar 

  42. Ogawa T., Nagaoka H.: Making good codes for classical-quantum channel coding via quantum hypothesis testing. IEEE Trans. Inf. Theory 53(6), 2261–2266 (2007) arXiv:quant-ph/0208139

    Article  MathSciNet  MATH  Google Scholar 

  43. Petz D.: Quasi-entropies for finite quantum systems. Rep. Math. Phys. 23, 57–65 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Pisier, G.: Non-commutative vector valued L p -spaces and completely p-summing maps. Astérisque, vol. 247, Socité Mathématique de France (1998)

  45. Polyanskiy, Y., Verdú, S.: Arimoto channel coding converse and Rényi divergence. In: Proceedings of the 48th Annual Allerton Conference on Communication, Control, and Computation, pp. 1327–1333 (2010)

  46. Renner, R.: Security of quantum key distribution. Ph.D. thesis, ETH Zurich (2005). arXiv:quant-ph/0512258

  47. Sacchi M.F.: Entanglement can enhance the distinguishability of entanglement-breaking channels. Phys. Rev. A 72(1), 014305 (2005) arXiv:quant-ph/0505174

    Article  ADS  MathSciNet  Google Scholar 

  48. Sacchi M.F.: Optimal discrimination of quantum operations. Phys. Rev. A 71(6), 062340 (2005) arXiv:quant-ph/0505183

    Article  ADS  MathSciNet  Google Scholar 

  49. Schumacher B., Westmoreland M.: Sending classical information via noisy quantum channels. Phys. Rev. A 56(1), 131–138 (1997)

    Article  ADS  Google Scholar 

  50. Tan S.-H., Erkmen B.I., Giovannetti V., Guha S., Lloyd S., Maccone L., Pirandola S., Shapiro J.H.: Quantum illumination with Gaussian states. Phys. Rev. Lett. 101(25), 253601 (2008) arXiv:0810.0534

    Article  ADS  Google Scholar 

  51. Tomamichel M., Colbeck R., Renner R.: A fully quantum asymptotic equipartition property. IEEE Trans. Inf. Theory 55(12), 5840–5847 (2009) arXiv:0811.1221

    Article  MathSciNet  Google Scholar 

  52. Tomamichel M., Hayashi M.: A hierarchy of information quantities for finite block length analysis of quantum tasks. IEEE Trans. Inf. Theory 59(11), 7693–7710 (2013) arXiv:1208.1478

    Article  MathSciNet  Google Scholar 

  53. Tomamichel, M., Wilde, M.M., Winter, A.: Strong converse rates for quantum communication. In: 2015 IEEE International Symposium on Information Theorey, Hong Kong, pp. 2386–2390 (2015). arXiv:1406.2946

  54. Umegaki H.: Conditional expectation in an operator algebra. Kodai Math. Semin. Rep. 14(2), 59–85 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  55. Wang L., Renner R.: One-shot classical-quantum capacity and hypothesis testing. Phys. Rev. Lett. 108(20), 200501 (2012) arXiv:1007.5456

    Article  ADS  Google Scholar 

  56. Wilde M.M., Winter A., Yang D.: Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Rényi relative entropy. Commun. Math. Phys. 331(2), 593–622 (2014) arXiv:1306.1586

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark M. Wilde.

Additional information

Communicated by M. M. Wolf

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cooney, T., Mosonyi, M. & Wilde, M.M. Strong Converse Exponents for a Quantum Channel Discrimination Problem and Quantum-Feedback-Assisted Communication. Commun. Math. Phys. 344, 797–829 (2016). https://doi.org/10.1007/s00220-016-2645-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2645-4

Keywords

Navigation