Skip to main content
Log in

\({\mathbb{Z}_{2}}\) Invariants of Topological Insulators as Geometric Obstructions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a gapped periodic quantum system with time-reversal symmetry of fermionic (or odd) type, i.e. the time-reversal operator squares to \({-\mathbb{1}}\). We investigate the existence of periodic and time-reversal invariant Bloch frames in dimensions 2 and 3. In 2d, the obstruction to the existence of such a frame is shown to be encoded in a \({\mathbb{Z}_2}\)-valued topological invariant, which can be computed by a simple algorithm. We prove that the latter agrees with the Fu-Kane index. In 3d, instead, four \({\mathbb{Z}_2}\) invariants emerge from the construction, again related to the Fu-Kane-Mele indices. When no topological obstruction is present, we provide a constructive algorithm yielding explicitly a periodic and time-reversal invariant Bloch frame. The result is formulated in an abstract setting, so that it applies both to discrete models and to continuous ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altland A., Zirnbauer M.: Non-standard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B 55, 1142–1161 (1997)

    Article  ADS  Google Scholar 

  2. Ando Y.: Topological insulator materials. J. Phys. Soc. Jpn. 82, 102001 (2013)

    Article  ADS  Google Scholar 

  3. Avila J.C., Schulz-Baldes H., Villegas-Blas C.: Topological invariants of edge states for periodic two-dimensional models. Math. Phys. Anal. Geometry 16, 136–170 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Carpentier D., Delplace P., Fruchart M., Gawedzki K.: Topological index for periodically driven time-reversal invariant 2d systems. Phys. Rev. Lett. 114, 106806 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Carpentier, D., Delplace, P., Fruchart, M., Gawedzki, K., Tauber, C.: Construction and properties of a topological index for periodically driven time-reversal invariant 2D crystals. Nucl. Phys. B

  6. Chang C.-Z. et al.: Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator. Science 340, 167–170 (2013)

    Article  ADS  Google Scholar 

  7. De Nittis G., Gomi K.: Classification of “Quaternionic” Bloch bundles. Commun. Math. Phys. 339, 1–55 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Dubrovin B.A., Novikov S.P., Fomenko A.T.: Modern Geometry—Methods and Applications. Part II: The Geometry and Topology of Manifolds. No. 93 in Graduate Texts in Mathematics. Springer-Verlag, New York (1985)

    Google Scholar 

  9. Fiorenza D., Monaco D., Panati G.: Construction of real-valued localized composite Wannier functions for insulators. Ann. Henri Poincaré 17(1), 63–97 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Fröhlich J., Werner P.h.: Gauge theory of topological phases of matter. EPL 101, 47007 (2013)

    Article  ADS  Google Scholar 

  11. Fruchart M., Carpentier D.: An introduction to topological insulators. Comput. Rendus Phys. 14, 779–815 (2013)

    Article  ADS  Google Scholar 

  12. Fu L., Kane C.L.: Time reversal polarization and a \({\mathbb{Z}_2}\) adiabatic spin pump. Phys. Rev. B 74, 195312 (2006)

    Article  ADS  Google Scholar 

  13. Fu L., Kane C.L., Mele E.J.: Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007)

    Article  ADS  Google Scholar 

  14. Furuta, M., Kametani, Y., Matsue, H., Minami, N.: Stable-homotopy Seiberg-Witten invariants and Pin bordisms. UTMS Preprint Series 2000, UTMS 2000-46, (2000)

  15. Graf G.M.: Aspects of the Integer Quantum Hall effect. Proc. Symp. Pure Math. 76, 429–442 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Graf G.M., Porta M.: Bulk-edge correspondence for two-dimensional topological insulators. Commun. Math. Phys. 324, 851–895 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Haldane F.D.M.: Model for a Quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2017 (1988)

    ADS  MathSciNet  Google Scholar 

  18. Hasan M.Z., Kane C.L.: Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010)

    Article  ADS  Google Scholar 

  19. Hua L.-K.: On the theory of automorphic functions of a matrix variable I–Geometrical basis. Am. J. Math. 66, 470–488 (1944)

    Article  MATH  Google Scholar 

  20. Hua L.-K., Reiner I.: Automorphisms of the unimodular group. Trans. Am. Math. Soc. 71, 331–348 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  21. Husemoller D.: Fibre bundles, 3rd edn. No. 20 in Graduate Texts in Mathematics. Springer-Verlag, New York (1994)

    Google Scholar 

  22. Kane C.L., Mele E.J.: \({\mathbb{Z}_{2}}\) Topological Order and the Quantum Spin Hall Effect. Phys. Rev. Lett. 95, 146802 (2005)

    Article  ADS  Google Scholar 

  23. Kane C.L., Mele E.J.: Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005)

    Article  ADS  Google Scholar 

  24. Kato T.: Perturbation Theory for Linear Operators. Springer, Berlin (1966)

    Book  MATH  Google Scholar 

  25. Kennedy R., Guggenheim C.: Homotopy theory of strong and weak topological insulators. Phys. Rev. B 91, 245148 (2015)

    Article  ADS  Google Scholar 

  26. Kennedy, R., Zirnbauer, M.R.: Bott periodicity for \({\mathbb{Z}_2}\) Symmetric Ground States of Free-Fermion systems. Commun. Math. Phys. doi:10.1007/s00220-015-2512-8

  27. Kennedy, R., Zirnbauer, M.R.: Bott-Kitaev periodic table and the diagonal map. Phys. Scr. T164, 014010 (2015). doi:10.1088/0031-8949/2015/T164/014010

  28. Kitaev A.: Periodic table for topological insulators and superconductors. AIP Conf. Proc. 1134, 22 (2009)

  29. Kuiper N.H.: The homotopy type of the unitary group of Hilbert space. Topology 3, 19–30 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mackey, D.S., Mackey, N.: On the Determinant of Symplectic Matrices. Numerical Analysis Report 422, Manchester Centre for Computational Mathematics, Manchester, England (2003)

  31. Monaco, D., Panati, G.: Symmetry and localization in periodic crystals: triviality of Bloch bundles with a fermionic time-reversal symmetry. Proceedings of the conference “SPT2014—Symmetry and Perturbation Theory”, Cala Gonone, Italy, Acta App. Math. 137, 185–203 (2015)

  32. Moore J.E., Balents L.: Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306(R) (2007)

    Article  ADS  Google Scholar 

  33. Panati G.: Triviality of Bloch and Bloch-Dirac bundles. Ann. Henri Poincaré 8, 995–1011 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Prodan E.: Robustness of the Spin-Chern number. Phys. Rev. B 80, 125327 (2009)

    Article  ADS  Google Scholar 

  35. Prodan E.: Disordered topological insulators: a non-commutative geometry perspective. J. Phys. A 44, 113001 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Prodan E.: Manifestly gauge-independent formulations of the \({\mathbb{Z}_2}\) invariants. Phys. Rev. B 83, 235115 (2011)

    Article  ADS  Google Scholar 

  37. Ryu S., Schnyder A.P., Furusaki A., Ludwig A.W.W.: Topological insulators and superconductors: tenfold way and dimensional hierarchy. New J. Phys. 12, 065010 (2010)

    Article  ADS  Google Scholar 

  38. Schulz-Baldes H.: Persistence of spin edge currents in disordered Quantum Spin Hall systems. Commun. Math. Phys. 324, 589–600 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Schulz-Baldes H.: \({\mathbb{Z}_{2}}\) Indices and Factorization Properties of Odd Symmetric Fredholm Operators. Doc. Math. 20, 1481–1500 (2015)

    MathSciNet  Google Scholar 

  40. Steenrod N.: The Topology of Fibre Bundles. No. 14 in Princeton Mathematical Series. Princeton University Press, Princeton (1951)

    MATH  Google Scholar 

  41. Sticlet D., Péchon F., Fuchs J.-N., Kalugin P., Simon P.: Geometrical engineering of a two-band Chern insulator in two dimensions with arbitrary topological index. Phys. Rev. B 85, 165456 (2012)

    Article  ADS  Google Scholar 

  42. Soluyanov A.A., Vanderbilt D.: Wannier representation of \({\mathbb{Z}_2}\) topological insulators. Phys. Rev. B 83, 035108 (2011)

    Article  ADS  Google Scholar 

  43. Soluyanov A.A., Vanderbilt D.: Computing topological invariants without inversion symmetry. Phys. Rev. B 83, 235401 (2011)

    Article  ADS  Google Scholar 

  44. Soluyanov A.A., Vanderbilt D.: Smooth gauge for topological insulators. Phys. Rev. B 85, 115415 (2012)

    Article  ADS  Google Scholar 

  45. Thouless D.J., Kohmoto M., Nightingale M.P., de Nijs M.: Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982)

    Article  ADS  Google Scholar 

  46. Wockel Ch.: A generalization of Steenrod’s approximation theorem. Arch. Math. (Brno) 45, 95–104 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Panati.

Additional information

Communicated by R. Seiringer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiorenza, D., Monaco, D. & Panati, G. \({\mathbb{Z}_{2}}\) Invariants of Topological Insulators as Geometric Obstructions. Commun. Math. Phys. 343, 1115–1157 (2016). https://doi.org/10.1007/s00220-015-2552-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2552-0

Keywords

Navigation